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Abstract: Precision forestry integrates advanced technologies to revolutionize forest management, enhancing productivity, sustainability, and
environmental stewardship. This review explores recent developments across multiple domains, including forest inventory, tree improvement,
timber harvesting, and wood processing. Technological tools such as Terrestrial Laser Scanning (TLS), Synthetic Aperture Radar (SAR),
Unmanned Aerial Vehicles (UAVs), and satellite remote sensing have significantly improved forest inventory accuracy, species identification,
and real-time pest outbreak monitoring. In tree improvement, Free-Air CO. Enrichment (FACE) experiments and mini-plug techniques
demonstrate how genetic and environmental responses to elevated CO: levels and nursery innovations can optimize seedling quality and
forest growth. Mechanized harvesting technologies, such as software-assisted multi-tree handling, improve operational efficiency, while
advancements in organosolv and Kraft pulping enhance pulp quality and sustainability. Additionally, deep learning models and X-ray
computed tomography are facilitating automated wood quality assessment, offering non-destructive insights into density, moisture, and defect
detection. Despite the promise of precision forestry, challenges persist, including high implementation costs, technological integration hurdles,
and the need for skilled personnel. Addressing these barriers is crucial for the widespread adoption of precision forestry in sustainable forest
management.
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The growing need for wood production, combined with
increasing economic and environmental expectations from
forests, necessitates innovative solutions and advanced
technologies. Taylor (2002) defines precision forestry as the
planning and execution of site-specific forest management
activities aimed at improving wood product quality and
utilization, reducing waste, increasing profits, and
maintaining environmental quality. Ziesak (2006), observed
that precision forestry employs advanced sensing and
analytical tools to facilitate site-specific, economic,
environmental, and sustainable decision-making throughout
the forestry value chain—from bare land management to the
final consumer purchasing paper or board (Kovacsova and
Antalova 2010). The concept of precision farming emerged in
the 1990s, recognizing the need to address spatial and
temporal variability in crop production through site or soil-
specific management practices (Tran and Nguyen 2006).
This precision approach was later applied to the forestry
sector in the early 2000s in the United States (Becker 2001),
where the First International Symposium on Precision
Forestry aimed to present advancements in information
technologies and analytical tools for supporting site-specific,
economic, environmental, and sustainable decision-making
(Dyck 2003). Precision forestry integrates information
technology and analytical tools to enhance economic,
environmental, and sustainable forestry practices (Gallo et
al., 2013, Fardusietal., 2017).

Technological innovation spans multiple disciplines
(Lindroos et al., 2017) and, when integrated with sustainable
practices, can significantly enhance forestry management
(Shah 2020). Smart sensors equipped with predictive
analytics can leverage soil and weather data to support
conservation and sustainable forest management (Shah
2020). In plant breeding, modern approaches incorporate
advanced molecular marker technologies such as gene
pyramiding, QTL identification, marker-assisted selection,
and transgenic crop development alongside traditional
morphology-based selection methods (Panda et al., 2020).
Advanced technologies like Remote sensing are important
for understanding environmental dynamics and ensuring
sustainable management of resources (Wani et al., 2025).
Additionally, recent scientific and technological
advancements offer new possibilities for improving the
efficiency and effectiveness of wildfire management
(Zimmerman 2011, Ravivarma et al., 2024). This paper
explores the latest developments in precision forestry
technologies, with a focus on geospatial information tools
that aid in forest management, tree improvement, wood
processing, and quality assessment.
Application of Advanced Technologies
Management
Forest inventory: Local forest inventories, traditionally
conducted through intensive ground-based sampling, have
played a crucial role in strategic planning by offering
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managers a detailed understanding of timber composition to
support tactical decision-making. Enhanced Forest
Inventories (EFIs) aim to improve confidence in forest
management decisions while maximizing returns on
investment throughout the commodity supply chain (White et
al,, 2013). By integrating traditional inventory data with
advanced Laser Scanning technology, EFls enhance spatial
and temporal accuracy. The resulting three-dimensional (3D)
representation of the operating area, from tree canopy to
ground level, provides managers with precise, customizable,
and highly informative insights into forest operations
(Bechtold and Patterson 2005, Goodbody et al., 2017).
Terrestrial laser scanning: Terrestrial Laser Scanning
(TLS) has been widely applied in various forestry studies,
including tree mapping (Pueschel et al., 2013), callipering
(Srinivasan et al., 2015), tree height estimation (Olofsson et
al., 2014, Srinivasan et al., 2015), and forest biomass
calculation (Greaves et al., 2015). Additionally, TLS has been
extensively investigated for estimating canopy structural
parameters (Cifuentes et al., 2014, Fardusi et al., 2017).
Singhal et al. (2021) compared TLS-based tree-level carbon
stock estimation with traditional allometric equations in
tropical forests of India. Their study found that TLS-based
estimates, with a relative RMSE of 26.01%, were more
accurate than those derived from local (42.58%-101.88%
RMSE) and global allometric equations (38.8%-50.69%
RMSE), highlighting TLS as a reliable and non-destructive
method for tree biomass estimation, especially for large
trees, while allometric equations remain useful when field-
measured parameters are available.

Synthetic aperture radar: Synthetic aperture radar (SAR) is
an active remote sensing technology known for its ability to
estimate biomass and operate in all-weather conditions (Tsui
et al.,, 2013). Wulder et al. (2012) mentioned that SAR
provides complementary datasets for forest biomass
estimation (Fardusi et al.,, 2017). Biomass assessment
involves volumetric vegetation analysis, leveraging SAR's
unique capability to penetrate tree canopies, an advantage
not present in optical remote sensing. The accuracy of SAR-
based estimation is influenced by wave polarization and
frequency, as longer wavelengths exhibit greater penetration
capacity, and cross-polarized waves show higher sensitivity
to biomass. These characteristics enable SAR to provide
more reliable biomass estimates with reduced uncertainties,
as microwaves exhibit less saturation at high biomass levels
compared to optical electromagnetic waves (Sinha et al.,
2015). Gama et al. (2010) utilized interferometric and
polarimetric SAR data to estimate biomass and volume in
Eucalyptus plantations. By applying X- and P-band SAR
images along with multivariate regression analysis, their
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study identified strong correlations between interferometric
height and tree volume, as well as the canopy scattering
index (CSI) for biomass estimation. The models developed
demonstrated high accuracy, with prediction errors around
10%, underscoring SAR technology's potential for large-
scale forestinventory.

Identification of tree species: The use of UAV-based
remote sensing for species identification is increasingly
gaining attention within the research community (Sothe et al.,
2019). Convolutional Neural Networks (CNNs) have been
employed for tree species identification using terrestrial
datasets, including RGB images of bark (Carpentier et al.,
2018), cross-section surfaces of trees (Hafemann et al.,
2014), and terrestrial LiDAR data (Mizoguchi et al., 2017).
Research has also explored CNN applications for species
classification using airborne sensors such as LiDAR and
hyperspectral imaging (Trier et al., 2018). Fricker et al.,
(2019) applied CNN models to airborne hyperspectral
imagery labelled with high-precision field training data to
identify individual tree species. Their study also compared
classification accuracies between the CNN model applied to
full hyperspectral imagery and an RGB pseudo true-color
subset. CNNs have demonstrated effectiveness in UAV-
based tree segmentation and species mapping, whether for
individual species, broad vegetation types, or plant cover
analysis. Kattenborn et al., (2019) conducted fine-grained
mapping of two vegetation species using a CNN-based
segmentation approach, with training data derived from UAV-
based high-resolution RGB imagery. Similarly, Lobo Torres et
al. (2020) evaluated five deep, fully convolutional networks
for semantic segmentation of a single tree species using
UAV-captured RGB images. Natesan et al. (2020)
investigated the application of Dense Convolutional
Networks (DenseNet) for identifying individual tree species
from high-resolution UAV-based RGB images. Their model
achieved high classification accuracy (over 84%) in
distinguishing five predominant coniferous species in
eastern Canada, despite variations in seasonal, temporal,
and illumination conditions. These findings underscore the
potential of UAV-integrated deep learning models in
automating forest inventory and management, offering a
cost-effective alternative to traditional methods.

Real-time monitoring of insect outbreaks: The introduced
insects and pathogens pose a significant threat to the health
of forested ecosystems, leading to considerable ecological
and economic consequences (Lovett et al., 2016). However,
identifying changes in forest conditions linked to insect pests
over large areas remains a persistent challenge (Senf et al.,
2017). The Landsat satellite family is widely used in forest
insect disturbance studies due to its moderate spatial
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resolution and extensive archive of imagery (Senf et al.,
2017). The modern Landsat series captures spectral data in
visible, near-infrared, and shortwave infrared bands ata 30 m
x 30 m pixel resolution, with image acquisitions occurring at
least every 16 days. However, because defoliation events
are often short-lived, cloud cover remains a significant
challenge in leveraging Landsat imagery for operational
forest health monitoring (Rullan-Silva et al., 2013, Townsend
et al., 2012, Pasquarella et al., 2017). Falanga et al. (2024)
introduced a novel method for detecting insect outbreaks in
urban trees using high-resolution Planet Scope satellite
imagery. By combining remote sensing with field surveys, the
study effectively identifies infestations of Toumeyella
parvicornis in Pinus pinea trees across Rome. The research
highlights the Renormalized Difference Vegetation Index
(RDVI) as a highly accurate indicator of pest damage,
achieving an accuracy rate exceeding 99%, underscoring the
potential of satellite-based monitoring for proactive pest
management and urban forest conservation.
Application of Advanced Technologies
Improvement

Free-Air CO, Enrichment (FACE) experiments: The
atmospheric CO: concentration remained stable at
approximately 270 pymol mol-" for at least 1,000 years before
the onset of the Industrial Revolution. Since then, CO: levels
have been rising at an accelerating rate. As a result, both
natural and managed ecosystems are now exposed to
elevated CO. concentrations that terrestrial vegetation has
not encountered since the early Miocene (Pearson and
Palmer 2000), leading to uncertain future consequences.
With advancements in scientific understanding and the
identification of underlying mechanisms, the necessity of
testing hypotheses under realistic open-air conditions
became evident. This led to the development of Free Air
Carbon dioxide Enrichment (FACE) technology (Hendrey
and Miglietta 2006).

A similar experiment at Aspen FACE, involving North
American plantation species such as aspen (Populus
tremuloides) and birch (Betula papyrifera), also
demonstrated a lack of photosynthetic acclimation in the
initial years. Instead, maximal stimulation was observed
(Karnosky et al., 2003, Leakey et al., 2009). Downregulation
of photosynthetic capacity in trees in response to Free-Air
CO2 Enrichment (FACE) exhibits considerable variability. A
significant portion of the data for trees included in this meta-
analysis originates from the Duke FACE experiment, which
investigated both loblolly pine and understory hardwood
species (Rogers and Ellsworth 2002). Findings from the
Rhinelander experiment indicate that while elevated CO2
levels enhance leaf area index (LAI) in Populus tremuloides,
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ozone stress diminishes LAI. Consequently, when both CO2
and O3 levels are elevated, there is no net change in LAl
(Karnosky et al., 2003, Ainsworth and Long 2005).
Mini-plug technique: The use of low-quality planting stock
is often a key factor in reforestation failure (Radoglou and
Raftoyannis 2001). Seedling quality, defined by its
morphological and physiological characteristics, is the only
aspect that can be directly controlled to enhance survival
rates after out planting (Kostopoulou et al., 2011). Nursery
practices play a crucial role in root development during the
nursery phase, which can have lasting effects on seedling
establishment (Costa et al., 2004). Among these practices,
container type significantly influences both seedling
production costs and overall seedling quality (Chirino et al.,
2008). A promising innovation in nursery stock production is
the use of mini-plugs, where seedlings undergo a short pre-
cultivation period under near-optimal environmental
conditions (Radoglou et al., 2011). Mini-plug containers,
typically smaller than 33 cm?, enable a shorter production
cycle compared to standard container-grown seedlings. This
approach allows for the development of high-quality
seedlings with well-formed fibrous root systems within a
single growing season (Kostopoulou et al., 2011).
Kostopoulou et al. (2011) examined the growth of Picea
abies, Robinia pseudoacacia, Pinus brutia, and Pinus nigra
in mini-plug containers of two different depths (37 mm and 60
mm) over a five-week period. Their findings indicated that P.
nigra and R. pseudoacacia benefited from deeper
containers, whereas P. abies exhibited better growth in
shallower ones. Similarly, Kostopoulou et al., (2010) reported
that mini-plug transplants outperformed traditional nursery
stock, producing seedlings with superior root development,
higher quality, and improved field survival. Factors such as
seed origin, mini-plug density, and substrate type were found
to significantly influence seedling growth. Additionally, pre-
cultivation in mini-plugs for five weeks under controlled
conditions enhanced seedling survival and transplant
success.
Application of advanced technologies in wood
processing pulping: Despite advancements in information
and communication technology, paper production remains a
key indicator of industrialization and educational
development worldwide. Pulp and paper production capacity
continues to grow (Sridach 2010). Consequently, research
and development efforts have focused on minimizing the
environmental impact of pulp and paper production through
various strategies. These include adopting alternative raw
materials, optimizing pulping chemicals, and adjusting
pulping conditions such as time, temperature, and pressure,
as well as reducing energy consumption.
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The organosolv pulping process has gained attention due
to its ability to produce high-yield pulp with low residual lignin
content, high brightness, and good strength (Yawalata and
Pasnez 2004). The advancements in organosolv pulping
have led to the development of methods capable of
producing pulp with properties comparable to kraft pulp
(Sridach 2010). Non-wood fibers are widely used for various
paper types, including writing, printing, and packaging
papers. Additionally, advances in micro and nanotechnology
offer significant benefits to pulp and paper manufacturers,
helping the industry achieve its future goals.

Cellulose and lignocellulose have great potential as
nanomaterials due to their abundant renewability, non-
fibrillar structure, and ability to self-assemble into well-
defined architectures while being multifunctional (Mohieldin
et al., 2011, Ogunwusi and Ibrahim 2014). Pulping involves
chemical, mechanical, and biological methods to break the
bonds in woody materials and separate cellulose fibers from
lignin (Wang et al., 2014). Improvements in pulping
processes have been achieved through lignin genetic
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development of extended impregnation and pre-hydrolysis
techniques to enhance the Kraft pulping process, and
modifications in chemical pulps for nanocellulose production.
These modifications improve fibre characteristics, including
fiber size, crystallinity, chemical composition, and fibre
surface functionality (Jiménez et al., 2008, Rojo et al., 2015,
Mboowa 2024). Dissolving pulp production involves pre-
hydrolysing wood chips before subjecting them to the
standard Kraft and sulphite pulping processes (WangQ et al.,
2014, Mboowan 2024). Wei et al. (2020) studied the liquid hot
water (LHW) pre-hydrolysis method, using the Combined
Severity Factor (CSF) to quantify treatment severity.

Wood quality assessment: Wood defects, including knots,
cracks, and discolorations, present a significant challenge for
industries that rely on high-quality wood products. The lack of
an efficient, automated detection system leads to increased
production costs, potential quality issues, and delays. To
address these challenges, this study proposes the
development of a deep learning model capable of accurately
identifying various defect patterns in images of wood

modifications, diversification of pulp-based products, the surfaces. Recent advancements in deep learning
Table 1. Technological innovations in forest science

Technology Purpose Methodology Conclusion Reference
Terrestrial Laser Carbon stock 12 trees were scanned from at least 4 26.01% more accurate than Singhal et al.
Scanning estimation positions and at most 8 positions local equations (2021)
Synthetic Aperture Biomass and volume Variables such as interferometric height Models showed a prediction Gama et al.
Radar (SAR) estimation (Hint), Canopy Scattering Index (CSI), error of around 10% to estimate (2010)

Dense Convolutional
Network (DenseNet)

Renormalized
Difference Vegetation
Index (RDVI)

Free-Air CO2
Enrichment (FACE)
experiments

Mini-plug technique

Multi-tree
cut-to—length
harvesting

Pre hydrolysis Kraft
Pulping

X-ray computed
tomography (CT)

Tree species
identification

and radar backscatter polarizations
(e.g., VV and HH) were analyzed

CNN and DenseNet

Real-Time monitoring satellite images (PlanetScope) and

of Insect Outbreaks

RDVIIndex

To assess effects of elevated CO, treatment (e— CO, -550

elevated CO,
concentrations

To improve quality of

planting stock

Harvesting

Pulping

Wood quality
assessment

ppm) and ambient CO, (a— CO,- 395
ppm)

mini-plug containers of two different
depths (37 mm and 60 mm) over a five-
week period.

software-based, multi-tree handling
(MTH) s used for harvesting

Reactor was filled with 250 g wood chips
and 1.5 L deionized water. The reactions
were conducted at a temperature
between 100 °C to 200 °C (at 20 °C
increments) for 60 min using a stirring
speed of 150
hydrolysis wood chips (100 g) were
cooked at 165 °C for 90 min

X-Ray Computed Tomography
Technique to determine the Density and
Moisture content

the biomass and volume.

84% accuracy Natesan et al.
(2020)

99% accuracy Falanga et al.
(2024)

Elevated CO, significantly
increased C/N litter biomass flux
of N, SS, SP and lipid in to the
soil, cellulose, hemicellulose
and lignin inputs to soils

P. nigra and R. pseudoacacia
benefited from deeper
containers

10% higher productivity in

Raietal. 2020).

Kostopoulou et
al. (2011)

Magagnotti et

comparison with a traditional al. (2020)
one
a-cellulose of 92.3%, degree of Wei et al. 2020
polymerization (DP) of 1081,
brightness of 85.1% ISO, and
Kappanumberof 0.61.

rom and Air-dried
R2 , of the models were all Wangetal.
higher than 0.97 2024
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frameworks, such as DenseNet (Densely Connected
Convolutional Networks), offer a promising solution for
automating wood defect detection. DenseNet, a
Convolutional Neural Network (CNN) architecture, is
particularly effective due to its dense connectivity pattern,
which enhances feature reuse and propagation across
network layers (Dhanamathi et al., 2024).

Computed tomography (CT) techniques provide a non-
destructive and non-invasive means of measuring internal
properties of wood specimens (Wang et al., 2020). Wang et
al. (2020) specifically utilized X-ray Computed Tomography
to determine the density and moisture content of poplar
(Populus xiangchengensis) and bamboo (Phyllostachys
edulis). Their findings revealed statistically significant
differences in CT-measured values for D and MC between
these species. The study established independent D-CT and
MC-CT linear models for both species:

Poplar: D = 0.00098 x H + 1.02603, MC = 0.00309 x H +
1.89982
Bamboo: D = 0.00118 x H + 0.98684, MC = 0.00131 x H +
0.31488

where H represents the CT number. The determination
coefficients (R?) for all models exceeded 0.97, demonstrating
the feasibility of using X-ray CT technology for accurately
determining the density and moisture content of wood and
bamboo. Ji et al., (2021) further explored how CT scanning
can assess wood quality and predict tree value by analysing
knot characteristics in amabilis fir and western hemlock.
Their study linked knot features to stand density and
sawmilling efficiency, revealing that tree diameter
significantly influences knot properties and lumber yield.
Additionally, stand density was found to have a greater
impact on western hemlock than on amabilis fir. The
predictive models developed in this research contribute to
preharvest stand valuation and enhanced forest
management strategies.

CONCLUSION

The evolution of precision forestry signifies a
transformative shift in forest science, integrating cutting-edge
technologies to enhance the efficiency, accuracy, and
sustainability of forest management. From terrestrial laser
scanning and synthetic aperture radar to UAV-based deep
learning and X-ray computed tomography, the array of tools
now available has revolutionized traditional approaches to
inventory, monitoring, tree improvement, harvesting, and
wood processing. Advanced techniques like Free-Air CO:
Enrichment (FACE) and mini-plug cultivation support
sustainable silviculture, while sustainable harvesting systems
and nanotechnology-driven pulping processes align with
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modern industrial demands. Despite promising results across
diverse applications, the full-scale adoption of precision
forestry is hindered by high costs, technical complexities, and
a shortage of skilled personnel. Overcoming these
challenges will require strategic investment in education,
training, and institutional capacity building.
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