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Abstract: This study assessed biomass and carbon storage dynamics across different agroforestry systems and distance gradients from a
reservoir. Biomass estimation was carried out using stratified quadrat sampling for trees and crops, with carbon stock quantified as the sum of
the aboveground and belowground components. There was significant variation in the total carbon storage among agroforestry systems and
across distance classes, with their interaction effect also being noteworthy (P=0.429). The home garden system exhibited the highest carbon
stock (54.05 t ha™), while the agri-silviculture system recorded the lowest (29.42 t ha™"). Across spatial gradients, carbon stocks declined with
increasing distance from the reservoir, ranging from 45.69 t ha™ at D1 (0-2 km), t0 29.95 t ha™* at D7 (12-14 km). The combined influence of
management practices, species composition, and site conditions plays a decisive role in carbon accumulation. These findings affirm that
diversified and intensively managed agroforestry systems, particularly home gardens, have greater potential for enhancing carbon storage

thanless diversified systems.
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Agroforestry, the deliberate integration of trees with crops
and/or livestock, is widely acknowledged as a land use
practice that delivers multiple ecological, economic, and
social benefits. Among its various ecosystem services, the
ability to generate substantial biomass and sequester
atmospheric carbon dioxide makes agroforestry a crucial
strategy for climate change mitigation (Jose 2009, Thakur et
al., 2011, Singh et al., 2015, Chaturvedi et al., 2016, Luna et
al., 2016). Trees in these systems act as long-term carbon
sinks, storing carbon in their biomass (Bhusara et al., 2016,
Singh et al., 2019, Rakshita et al., 2025) and soils while also
contributing to soil fertility, nutrient cycling, and biodiversity
enhancement (Sarvade et al., 2014a, Sarvade et al., 20163,
Sarvade et al., 2019, Thakur et al., 2024). Furthermore,
agroforestry moderates microclimatic extremes, reduces soil
erosion, and provides timber, fodder, fruits, and fuelwood,
ensuring livelihood security for rural communities (Sarvade
etal., 2014b, Thakur et al., 2015). In the context of increasing
climate variability, its role in balancing productivity with
environmental conservation is gaining global recognition
(Sharmaetal., 2022).

The spatial arrangement of agroforestry systems plays a
significant role in determining the biomass production and
carbon storage potential. Factors such as soil moisture
availability, nutrient status, and microclimatic conditions can
vary considerably depending on the proximity to water bodies

(Sarvade et al., 2016a, 2016b). The Gobind Sagar Reservoir
in Himachal Pradesh, formed by the construction of the
Bhakra Dam on the Sutlej River, exerts a notable influence on
the surrounding agroforestry landscapes (Anonymous 2005,
Sarvade 2024). These systems are distributed across
multiple distance classes from the reservoir, where
hydrological influences, soil characteristics, and human
management practices interact to shape vegetation growth
and productivity (Wu et al., 2004). Understanding how these
spatial gradients impact biomass and carbon dynamics can
provide valuable insights for targeted land use planning and
climate resilience.

The varied topography and climatic diversity of Himachal
Pradesh create favorable conditions for a wide range of
agroforestry models. The presence of the Gobind Sagar
Reservoir adds an additional layer of hydrological
moderation, potentially improving soil moisture regimes and
supporting higher biomass yields near the water body (Degu
et al., 2011, Sarvade et al., 2016a. Sarvade et al., 2016b).
Studies from other regions have indicated that proximity to
reservoirs is often correlated with increased tree growth rates
and biomass accumulation due to stable water availability
and moderate temperature fluctuations. However, little
research has been conducted to examine how these
proximity effects translate into variations in carbon
sequestration potential, particularly in the Himalayan foothill
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agroforestry context. This knowledge gap limits our ability to
optimize agroforestry systems for both ecological and
economic gains.

Evaluating biomass production and carbon sequestration
across different proximity classes in the Gobind Sagar
Reservoir offers dual benefits: advancing scientific
understanding and guiding sustainable land management
(Sarvade et al., 2016a, Sarvade et al., 2016b). Insights from
such research can help policymakers and local communities
design agroforestry interventions that maximize carbon
capture, while enhancing productivity and income
generation. Furthermore, quantifying these patterns
contributes to accurate regional carbon accounting, which is
a key requirement for implementing climate-smart
agricultural and forestry programs. These findings also
support participation in carbon credit mechanisms, providing
additional financial incentives for farmers to adopt and
maintain tree-based systems.

Against this backdrop, the present study aimed to
investigate biomass yield and carbon storage dynamics in
different agroforestry systems located at varying distances
from the Gobind Sagar Reservoir. By systematically
comparing agroforestry systems across defined proximity
gradients, this study sought to identify patterns of spatial
variation, determine the key environmental and management
factors influencing biomass and carbon levels, and
recommend strategies to enhance their carbon
sequestration potential. Such an approach will not only
deepen our understanding of reservoir-influenced
landscapes, but also support the broader agenda of climate
change mitigation and sustainable rural development in
Himachal Pradesh.

MATERIAL AND METHODS
Study area: This research was conducted in the vicinity of
the Gobind Sagar Reservoir, situated within the upper sub-
basin of the Satluj Basin (Code: 13) in Bilaspur district,
Himachal Pradesh. Geographically, the district lies between
latitudes 31°12'30" and 31°3545" N and longitudes
76°23'45" and 76°55'40" E, encompassing a total area of
1,167 km?, equivalent to approximately 2.1% of the state's
geographical expanse (Sarvade et al., 2016a , 2016b). The
terrain spans elevations from 290 to 1,980 m above mean
sea level, with a substantial portion of the district lying below
650 m a. s.l.. The study area falls under the sub-mountain,
low-hill tropical subtropical zone of the Himachal Pradesh.
Based on 10-year averages (2005-2014), temperatures
ranged from 3.53°C (January) to 23.20°C (July) for minimum
and 19.38°C (January) to 36.19°C (May) for maximum.
Monsoon rainfall varied between 104.49 mm (June) and

1261

309.97 mm (August), with annual averages of 1,106.12 mm
and marked inter-seasonal and inter-annual fluctuations,
notably higherin 2006, 2007, and 2013 (Sarvade 2024).

A total of 25 sites were selected to address the study
objectives, strategically distributed across seven concentric
distance zones, each 2 km wide, surrounding the Gobind
Sagar Reservoir designated as D1 (0-2 km), D2 (2-4 km), D3
(4-6 km), D4 (6-8 km), D5 (8-10 km), D6 (10-12 km), and D7
(12-14 km). These sites are located within SLJU020,
SLJU021, SLJU022, and SLJU023 catchment. The
distribution included six sites in D1 and D2, three sites in D3,
D4, and D6, two sites in D5, and 2 in D7. Detailed site
information is shownin Figure 1.

Sample collection and data analysis: In the agroforestry
systems, biomass and carbon estimations were carried out
through stratified quadrat sampling. For tree components,
three quadrats of 15m x 15m were demarcated, while 1m x
1m quadrats were employed for crop components, following
the guidelines of Muller-Dombois and Ellenberg (1974). The
agroforestry systems in the study area were classified
according to the structural attributes and spatial arrangement
of the constituent plant species. Tree measurements were
recorded once during the study period, whereas crop
sampling was performed at the harvest stage of the growing
season to capture the maximum biomass accumulation.
Biomass estimation: The biomass of all vegetation strata
(trees and crops) was assessed to estimate aboveground
biomass (AGB), belowground biomass (BGB), and total
biomass (TB) in all identified agroforestry systems. A
destructive sampling method was employed for crops. All
individuals occurring within the designated quadrats were
harvested, separated by species, and partitioned into shoot
and root components. Plant parts were oven-dried at 70 +
5°C to a constant weight, and biomass was expressed in
tonnes ha™'. Belowground herbaceous biomass was
obtained by excavating a soil monolith of 25 cm x 25 cm x 30
cm, whereas shrub roots were extracted manually, washed
thoroughly, and oven-dried for biomass determination
(Gupta et al., 2009). Diameter at breast height (DBH) and
total height were recorded using tree calipers and Spiegel
Relaskop, respectively. Tree volume was estimated using
species- and region-specific volume equations (FSI 2006,
2012). The aboveground tree biomass was calculated by
multiplying the stem volume by species-specific wood
density and biomass expansion factors (Dixon et al., 1993;
1994; IPCC, 2007), whereas belowground biomass was
derived as 25% of the aboveground biomass following IPCC
(1996).

Carbon storage estimation: Carbon storage in the different
vegetation layers was calculated using biomass-derived
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values. For herbaceous, crop, and shrub species, both
aboveground and belowground carbon densities were
estimated by multiplying the respective biomasses with a
carbon conversion factor of 0.45 (Woomer 1999). For trees,
aboveground carbon stock was obtained by applying factors
suggested by the IPCC (2007), whereas belowground tree
carbon was estimated using a conversion factor of 0.45
(Woomer 1999).

Statistical analysis: To evaluate the variations among land
use systems and distance classes from the reservoir across
the 25 study sites, two-way analysis of variance was
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performed. Post-hoc comparisons were carried out using the
least significant difference at significance threshold of P <
0.05. All statistical analyses were conducted using SPSS
software package version 23 (IBM Corp 2015).

RESULTS AND DISCUSSION
Aboveground biomass (AGB): Among the systems, the
highest aboveground biomass was under HG (90.14 t ha™),
which was significantly superior to all other systems (Table
1). In contrast, the lowest value was observed under AS
(48.56 t ha™), which remained statistically comparable (P =
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Fig. 1. Study sites selected in upstream catchment area of Gobind Sagar reservoir

Table 1. Aboveground biomass production (t ha™) in agroforestry systems at different distance classes from reservoir

DFR Agroforestry systems (Mean + SD) Mean
AS AH ASH AHS HG

D1 61.90 £7.97 72.55 + 8.57 64.10 + 8.63 67.04 + 15.30 111.76 £ 15.80 75.47
D2 54,55+ 13.39 64.66 + 12.88 53.50 + 11.51 72.69 + 2.09 95.80 + 11.24 68.24
D3 48.36 £ 4.81 47.60 £ 7.97 4317 £1.14 59.29 + 7.06 94.55 + 10.00 58.59
D4 43.70 £ 5.98 54.68 +7.04 55.04 + 6.28 58.48 + 10.39 90.17 +2.14 60.41
D5 48.90 £ 7.55 59.58 + 0.93 55.64 + 8.60 62.63 +0.89 92.53+1.32 63.86
D6 42.08 £ 2.55 48.90 £ 8.79 52.96 + 2.15 48.33 + 3.61 75.17 + 11.81 53.49
D7 40.44 £ 4.16 47.76 £ 3.39 47.10£5.18 41.70 £ 3.48 71.04+5.18 49.61
Mean 48.56 56.53 53.07 58.59 90.14 61.38
P value 0.001 (AFs); 0.001 (DFR); 0.01 (AFs x DFR)

DFR = Distance from Reservoir; AFs = Agroforestry systems; AS = Agri-silviculture; AH = Agri-horticulture; ASH = Agri-silvi-horticultre; AHS = Agri-horti-silviculture;
HG =Home gardens
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0.212) with ASH (53.07 t ha"). Across distance classes,
aboveground biomass peaked significantly at D1 (75.47 t ha’
') and showed a gradual decline with increasing distance
from the reservoir, following the order: D2 (68.24 t ha™) > D5
(63.86tha™)>D4(60.41tha")>D3 (58.59tha") > D6 (53.49
tha')> D7 (49.61 t ha™). The significant interaction was also
observed between agroforestry systems and distance
classes, with the maximum biomass observed under HG at
D1 (111.76 t ha™) and the minimum under AS at D7 (40.44 t
ha™).

These findings highlight the synergistic role of tree-crop
integration in enhancing aboveground biomass productivity.
Improved soil fertility under agroforestry conditions coupled
with complementary spatial arrangements of tree and crop
components facilitates better utilization of available light,
water, and nutrients. Furthermore, site-specific factors, such
as slope and soil texture, modulate biomass accumulation,
thereby reinforcing the ecological advantages of agroforestry
systems (Das et al., 2008, Gera et al., 2011, Holzmueller and
Jose 2012, Kanime et al., 2013).

Belowground biomass (BGB): The HG system exhibited
the maximum BGB (19.83 t ha"), which was significantly
higher than that of the other systems (Table 2). Conversely,
the AS system showed the minimum BGB (11.28 t ha™),
which remained statistically comparable with ASH (12.16 t
ha"). Across distance gradients, D1 recorded the highest
BGB (17.48 tha™), while the lowest was obtained at D7 (11.32
tha), statistically similar to D3 (13.18 tha™) and D6 (12.10 t
ha™). The significant interaction effect between system types
and distance classes was evident, with the maximum BGB
under HG at D1 (25.36 t ha") and the minimum under AS at
D7 (9.35 t ha™). The highlight that root biomass dynamics in
agroforestry systems are not only system-dependent but
also strongly influenced by proximity to water sources.
Higher root proliferation under HG may be attributed to
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efficient resource capture and favorable soil
microenvironments, whereas lower values in AS reflect
limited rooting capacity and reduced belowground allocation.
Variations along distance gradients suggest that soil
moisture availability, fertility status, and microclimatic
conditions governed by the reservoir play a decisive role.
Additionally, tree-crop interactions, inherent soil
characteristics, and management interventions, such as
spacing and pruning, significantly contribute to the observed
differences in BGB (Das et al., 2008, Kanime et al., 2013,
Sarvadeetal., 2016b, Sarvade 2024).

Total biomass (TB): The analysis revealed that both main
effects were highly significant, with a notable interaction
effect (Table 3). Among the systems, HG accumulated the
maximum total biomass (109.97 t ha™), followed by AHS, AH
and ASH, whereas the minimum was in AS (59.84 t ha™).
Across distance gradients, TB was highestat D1(92.95tha™)
and lowest at D7 (60.92 t ha™). The interaction of system and
distance further demonstrated that HG at D1 stored the
greatest amount of biomass (137.12 t ha™), while AS at D7
registered the least (49.79 t ha™). The observed variation in
biomass across systems and distances underscores the role
of management interventions that improve soil fertility,
reduce interspecific competition, and enhance overall
system productivity (Swarup et al., 2000; Hati et al., 2006).
Biomass accumulation in agroforestry is further shaped by
the type and proportion of tree-crop components, planting
geometry, and availability of critical growth resources, such
as soil moisture and light (Das et al., 2008, Das and Das
2010, Gera et al., 2011, Holzmueller and Jose 2012, Kanime
et al, 2013). ASH systems contributed substantially
(72.92%) to fruit and fodder tree components, a trend
consistent with the findings of Singh (2014) in the Giri
watershed of Himachal Pradesh. More broadly, system
productivity is the outcome of interacting ecological factors,

Table 2. Belowground biomass production (t ha™) in agroforestry systems at different distance classes from reservoir

DFR Agroforestry systems (Mean + SD) Mean
AS AH ASH AHS HG

D1 14.56 £ 2.05 17.28 £2.82 14.77 £ 2.01 15.44 + 3.69 25.36 + 4.92 17.48
D2 12.74 £ 317 14.91 £ 3.40 12.34 £ 2.65 16.85+0.84 20.96 + 2.92 15.56
D3 11.14£1.24 10.95 £+ 1.53 9.85+0.40 13.39+ 1.46 20.55+2.19 13.18
D4 10.23 £ 1.30 12.40 £ 1.42 1250+ 1.34 12.99 + 2.17 19.62 + 0.43 13.55
D5 11.20 £ 1.62 13.43£0.14 12.73+1.94 13.99+0.35 19.96 + 0.35 14.26
D6 9.75+0.53 11.04 + 1.87 12.09 + 0.50 11.05 £ 0.93 16.55 £2.13 12.10
D7 9.35+1.12 11.04 £ 0.80 10.83 £1.27 9.60 + 0.60 15.78 £+ 0.48 11.32
Mean 11.28 13.01 12.16 13.33 19.83 13.92
P value 0.001 (AFs); 0.001 (DFR); 0.01 (AFs x DFR)
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including climate, soil properties, floristic diversity, and
species phenology, as emphasized by Bahar (2003).

Above ground carbon (AGC): There was significant effect
of both factors with HG recording the maximum AGC (55.88 t
ha™), significantly higher than all other systems (Table 4). The
lowest value was under AS (24.28 t ha™), which statistically
comparable with ASH (26.54 t ha"). Across distance
gradients, AGC was highest at D1 (37.73 t ha™') and declined
progressively with increasing distance, reaching its minimum
at D7 (24.80 t ha™). The significant interaction effect was also
observed, with the maximum AGC recorded under HG at D1
(55.88 t ha) and the minimum under AS at D7 (20.22 t ha™).
Greater AGC accumulation under HG highlights the
synergistic role of tree-crop interactions supported by
favorable soil and climatic conditions (Das et al., 2008, Gera
et al.,, 2011, Jose and Bardhan 2012). Declining AGC at
greater distances from the reservoir may be linked to
enhanced soil erosion and associated fertility loss, which
adversely affects the carbon storage capacity (Mahmoudi et
al., 2010). Singh (2014) also reported similar system-specific
variations, with the agri-silvi-horticulture system showing the

highest aboveground carbon (31.56 t C ha"), followed by
agri-horti-silviculture, agri-silviculture and agri-horticulture .
These findings collectively emphasize that system
composition, resource availability, and site conditions act in
concert to regulate aboveground carbon dynamics in
agroforestry landscapes.

Below ground carbon (BGC): The agroforestry systems
and distance classes from the reservoir exerted a significant
influence with the maximum BGC recorded under HG (8.97 t
ha) (Table 5). The minimum was in AS (5.14 t ha”), which
remained statistically comparable with ASH (5.53 t ha™).
Across distance gradients, the highest BGC was observed at
D1 (7.95 t ha™), while the lowest was recorded at D7 (5.14 t
ha™), which did not differ significantly from D3, D4, D5 and
D6. The interaction effect was also significant with HG at D1
accumulating the maximum BGC (11.52 tha™) and AS at D7
recording the least (4.26 t ha™). The decline in the BGC with
increasing distance from the reservoir indicates the influence
of soil degradation, declining fertility, harsher microclimatic
conditions, and higher anthropogenic pressures (Mahmoudi
et al., 2010, Gera et al., 2011, Kanime et al., 2013). The

Table 3. Total biomass production (t ha™) in agroforestry systems at different distance classes from reservoir

DFR Agroforestry systems (Mean + SD) Mean
AS AH ASH AHS HG

D1 76.46 + 9.99 89.82 + 11.36 78.87 + 10.64 82.47 + 18.92 137.12 £ 20.52 92.95
D2 67.30 + 16.55 79.56 + 16.22 65.84 + 14.17 89.54 +2.74 116.75 + 14.14 83.80
D3 59.50 + 6.04 58.55 + 9.49 53.02 + 1.52 72.68 + 8.52 115.10 + 12.17 71.77
D4 53.93+7.28 67.08 + 8.46 67.54 +7.63 7148 +12.55 109.79 £ 2.48 73.96
D5 60.10 £ 9.17 73.01+1.07 68.37 + 10.54 76.62 +1.24 112.49 + 1.67 78.12
D6 51.83 +3.05 59.94 + 10.65 65.05 + 2.65 59.39 + 4.54 91.72+13.93 65.59
D7 49.79 £5.28 58.80 +4.19 57.93 £ 6.44 51.30 £ 4.08 86.82 + 5.66 60.92
Mean 59.84 69.54 65.23 71.92 109.97 75.30
P value 0.001 (AFs); 0.001 (DFR); 0.01 (AFs x DFR)

Table 4. Aboveground carbon storage (t ha™) in agroforestry systems at different distance classes from reservoir

DFR Agroforestry systems (Mean + SD) Mean
AS AH ASH AHS HG

D1 30.95 + 3.98 36.27 +4.28 32.05 +4.31 33.52+7.65 55.88+7.90 37.73
D2 27.28 + 6.69 32.33+6.44 26.75+5.76 36.34+1.05 47.90 £ 5.62 34.12
D3 2418 +2.41 23.80 + 3.98 21.58 + 0.57 29.65 + 3.53 47.27 £5.00 29.30
D4 21.85+2.99 27.34 £ 3.52 2752 +3.14 29.24 +5.20 45.08 £ 1.07 30.21
D5 24.45+3.78 29.79 + 0.47 27.82+4.30 31.32+0.45 46.27 £ 0.66 31.93
D6 21.04 +1.27 24.45+4.39 26.48 + 1.08 2417 +1.81 37.59+5.91 26.74
D7 20.22 +2.08 23.88+1.70 23.55+2.59 20.85+1.74 35.52+2.59 24.80
Mean 24.28 28.27 26.54 29.30 45.07 30.69
P value 0.001 (AFs); 0.001 (DFR); 0.01 (AFs x DFR)
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superior BGC under HG suggests that system composition
and management practices can enhance belowground
carbon allocation through improved rooting depth and soil
resource capture. Singh (2014) also observed that agri-silvi-
horticulture systems stored the maximum belowground
carbon (9.43 t C ha™), followed by agri-horti-silviculture agri-
silviculture and agri-horticulture (6.86t C ha™). These results
underline the pivotal role of system design, soil conditions,
and distance-induced ecological gradients in regulating
belowground carbon storage in agroforestry landscapes.

Total carbon (TC): The total carbon stock (AGC + BGC) from
the crop and tree components was markedly influenced by
both the agroforestry systems and the distance gradients
from the reservoir, and interaction also had a significant
impact on TC (Table 6). Among the systems, the home garden
(HG) accumulated the maximum TC (54.05 tha™), followed by
AHS , AH, ASH and the lowest in AS (29.42 t ha™). Across the
spatial classes, the highest TC stock was observed at the
nearest distance D1 (45.69 t ha), declining progressively
with distance, reaching the minimum at D7 (29.95 tha™). The
interaction pattern highlighted that the HG system at D1
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stored the maximum carbon (67.40 t ha"), whereas the lowest
was in AS at D7 (24.48 t ha'). These variations can be
attributed to system-specific management interventions that
enhance soil fertility, reduce tree-crop competition, and
subsequently promote higher biomass accumulation and
carbon retention (Swarup et al., 2000, Hati et al., 2006,
Murthy et al., 2013). Singh (2014) also reported that agri-silvi-
horticulture systems achieved the highest TC stock (40.99tC
ha™), followed closely by agri-horti-silviculture (39.49 tC ha™),
while agri-silviculture (31.57 t C ha") and agri-horticulture
(30.29t C ha) stored relatively lower carbon. The grand total
carbon stock in agroforestry systems is modulated by factors
such as tree-crop combinations, planting geometry, site
edaphic characteristics, and prevailing climatic conditions
(Maikhuri et al., 2000, Das and Chaturvedi 2005, Das and
Chaturvedi 2008, Gera et al., 2011, Nair 2012, Kanime et al.,
2013). Supporting this, Roshetko et al. (2002) demonstrated
that tree-based land use sequesters substantially more
carbon than croplands or grasslands under comparable
ecological settings. Similarly, Saha and Jha (2012) reported a
wide variation (12 to 228 Mg ha") with a median of 95 Mg ha™

Table 5. Belowground carbon storage (t ha™) in agroforestry systems (AFs) at different distance classes from reservoir

DFR Agroforestry systems (Mean + SD) Mean
AS AH ASH AHS HG

D1 30.95 + 3.98 36.27 +4.28 32.05 +4.31 33.52+7.65 55.88+7.90 37.73
D2 27.28 + 6.69 32.33+6.44 26.75+5.76 36.34+1.05 47.90 £ 5.62 34.12
D3 2418 +2.41 23.80 +3.98 21.58 +0.57 29.65 + 3.53 47.27 £5.00 29.30
D4 21.85+2.99 27.34 +3.52 27.52+3.14 29.24 +5.20 45.08 £ 1.07 30.21
D5 24.45+3.78 29.79 + 0.47 27.82+4.30 31.32+0.45 46.27 £ 0.66 31.93
D6 21.04 +1.27 24.45+4.39 26.48 + 1.08 2417 +1.81 37.59+5.91 26.74
D7 20.22 +2.08 23.88+1.70 23.55+2.59 20.85+1.74 35.52+2.59 24.80
Mean 24.28 28.27 26.54 29.30 45.07 30.69
P value 0.001 (AFs); 0.001 (DFR); 0.01 (AFs x DFR)

Table 6. Total carbon storage (t ha™) in agroforestry systems at different distance classes from reservoir

DFR Agroforestry systems (Mean + SD) Mean
AS AH ASH AHS HG

D1 37.59 +4.92 4415 £ 5.59 38.77 £5.23 40.54 £9.30 67.40 £ 10.10 45.69
D2 33.08+8.14 39.11£7.97 32.36 £ 6.96 44.01£1.35 57.38+6.95 41.19
D3 29.25 +2.97 28.78 + 4.66 26.06 + 0.75 35.72+4.19 56.56 + 5.99 35.27
D4 26.51 + 3.58 3297 +4.16 33.20+3.75 35.13+6.16 53.95+ 1.21 36.35
D5 29.54 + 4.51 35.89+0.53 33.61+5.18 37.66 + 0.61 55.28 + 0.82 38.39
D6 25.48 +1.50 2946 +5.24 31.97 £ 1.31 29.19+2.23 45.07 £ 6.84 32.24
D7 24.48 + 2.60 28.90 + 2.06 28.47 +3.17 25.21+2.01 42.67 £2.77 29.95
Mean 29.42 34.18 32.06 35.35 54.05 37.01
P value 0.001 (AFs); 0.001 (DFR); 0.01 (AFs x DFR)
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in the carbon sequestration potential of different agroforestry
systems across the North-Eastern Hill Regions, reinforcing
the high potential of diversified systems for long-term carbon
storage.

CONCLUSION

The study reaffirm that agroforestry systems hold
immense potential as nature-based solutions for climate
change mitigation, while simultaneously supporting rural
livelihoods. Home gardens, with their multi-strata structure
and high species diversity, have emerged as the most
effective model for maximizing carbon sequestration, while
agri-silviculture systems have demonstrated relatively lower
storage potential. Importantly, the proximity effect observed
near the reservoir highlights the role of microclimatic
conditions, soil moisture regimes, and landscape position in
influencing carbon accumulation, suggesting that site-
specific factors must be integrated into agroforestry planning.
For broader applicability, this study emphasizes that diverse,
well-managed agroforestry models should be prioritized
across various ecological and socioeconomic settings
worldwide. Incorporating multipurpose trees, shrubs, and
crops in a scientifically designed planting geometry not only
enhances carbon storage, but also delivers co-benefits such
as soil conservation, biodiversity enrichment, and food and
nutritional security. Therefore, governments, policymakers,
and development agencies should promote home gardens,
agri-horti-silviculture, and similar diversified systems as part
of climate-smart land management strategies. In a global
context, these results suggest that reservoir catchments,
river basins, and other ecologically fragile zones can be
rehabilitated effectively through agroforestry interventions.
Scaling up such practices contributes to achieving
international climate commitments (Paris Agreement, SDGs
13 and 15) and also address the livelihood needs of local
communities. Thus, agroforestry represents a win-win
pathway to reconcile climate mitigation with sustainable rural
development worldwide.
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