

Effect of Spacing and Banana Pseudo stem-Based Nutrients on Cowpea Yield under Agroforestry

Mehfuza Patel, M.B. Tandel*, S.M. Patel, M.K. Desai, M.P. Ahir¹ and Y.A. Garde²

Department of Silviculture and Agroforestry, College of Forestry

¹Horticulture Polytechnic, ASPEE College of Horticulture

Navsari Agricultural University, Navsari-396 450, India

²ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi-110 012, India

*E-mail: tandelmb@nau.in

Abstract: The present investigation was carried out to check the effect of various spacings and foliar sprays of Novel (banana pseudo stem based organic liquid nutrients) on growth and yield of cowpea (*Vigna unguiculata* L.) under mango-based agroforestry system during 2021 and 2022 at Navsari Agricultural University, Navsari, India. The trial was framed with eight treatment combinations of two factors viz., two levels of spacing and four levels of foliar spray of banana pseudo stem based organic liquid nutrients under mango orchard and open condition. The closer spacing (S; 30 cm x 30 cm) recorded significantly maximum plant height of cowpea at harvest. However, the highest f collar diameter, number of branches per plant, number of clusters per plant, yield per plant, plot and hectare were observed with spacing 45 cm x 45 cm as compared to 30 cm x 30 cm under mango-based agroforestry system as well as in open condition. Among various foliar application of novel fertilizers, Novel plus containing banana pseudo stem based organic liquid nutrients + botanical pesticides @ 1 % recorded significantly maximum cowpea growth parameters (plant height, collar diameter and number of branches per plant) as well as yield parameters (number of clusters per plant, and yield per hectare).

Keywords: Spacing, Foliar Spray, Novel, Cowpea, Agroforestry

In developing country like India, demand for food and nutrition is continuously increasing with raising population which creates pressure and challenges for agriculture. It is difficult to meet food and nutritional goals as the already limited agricultural is rapidly being diverted to other developmental activities. Therefore, diversification of land use systems with agroforestry is a necessary strategy to meet these challenges by compatible intercrops with perennial fruit crops for higher yield returns. Fruit-based agroforestry systems have been emerging in almost all the region of India on the basis of either planting of trees, pastures, arable crops etc. in existing fruit orchards or *vice versa* (Bhusara et al., 2016, Kumar and Chaturvedi 2017, Thakur et al., 2017). Integration of annual crops with fruit trees yields multiple outputs that ensure production and income generation in a sustainable manner (Verma and Thakur 2010, 2011, Awasthi 2018.). Among the fruit trees in the tropics *Mangifera indica* L., enjoys a dominant position both in terms of diversity and extent and farmers take intercrops in the early stage of mango orchards. Vegetables are one of the essential nutrient suppliers and can be easily integrated with fruit trees or forestry plantation or any other agroforestry systems in early stages. The cowpea is an annual herbaceous legume and can be grown under partially shade.

Due to increased inclination towards organic or natural farming is being advocated to produce chemical free vegetable, pulses grains fruits etc. Further health-related

issues and promotion of organic and natural farming in India, use of organic fertilizers in vegetable production is increasing by researchers and farmers for quality production. Organic fertilizers are naturally available mineral sources that contain moderate amount of essential plant nutrients (Shaji et al., 2021). Novel, Novel Prime and Novel Plus [a product developed under National Agricultural Innovation Project (NAIP), Navsari Agricultural University, Navsari, are an enriched sap of banana pseudo stem contains essential plant nutrients and naturally occurring plant growth enhancers like cytokinin, NAA, GA₃, macro and micro elements with botanical fungicide and pesticide property. The study was conducted with a view to generate the information regarding tree-crop interaction with use of organic fertilizers on cowpea under commercial fruit tree canopies.

MATERIAL AND METHODS

Experimental site: This study was conducted in February-June during 2021 and 2022 at Navsari Agricultural University, Navsari, geographically situated at latitude of 20° 57' N and longitude of 72° 54' E and at an altitude of about 9 m above the mean sea level. Climate of the area is sub-humid with average annual rainfall of 1500-1700 mm. The soil of experimental site was moderately drained clayey soils classified as "Deep Black Soil" predominated with montmorillonite clay mineral by its origin and medium in fertility (Kumar et al., 2020).

Experimental design and treatments: The experiment was laid out in randomized block design with factorial concept with three replications and eight treatment combinations of two different factors. i) spacing with two levels viz., 30 cm x 30 cm and 45 cm x 45 cm and ii) foliar spray of novel organic liquid fertilizers with four levels viz., F₁: control (No spray), F₂: Novel @ 1 % (banana pseudo stem based organic liquid nutrients), F₃: Novel prime @ 1 % (banana pseudo stem based organic liquid nutrients + botanical fungicide) and F₄: Novel plus @ 1 % (banana pseudo stem based organic liquid nutrients + botanical pesticides). The experiment was carried out under 10 years old mango orchard in which mango trees were planted at 9 m x 9 m spacing in open field condition. AVCP-1 (Anand Vegetable Cowpea) variety of Cowpea (*V. unguiculata* L.) was selected for present study. The crop was raised as per the recommended package of practices.

Novel, novel plus and novel prime organic liquid fertilizers were procured in 100 per cent concentration. The required concentrations of solutions were prepared in water at the time of application. First foliar spray of novel fertilizers was carried out after the initiation of flowering and second foliar spray was applied after 15 days of first spray according to treatments in each plot under mango and in open condition. The green pods for vegetable purpose were harvested manually by plucking when they were tender and at marketable size and continued over a considerably long period of cowpea. The data pertaining to various growth parameters of cowpea were recorded at the end of experiment. The yield parameters of cowpea were recorded at each picking and then total of all picking was averaged out.

RESULTS AND DISCUSSION

Cowpea growth: The data on growth parameters (plant height, collar diameter and number of branches per plant) of cowpea variety AVCP – 1 as influenced by spacing and foliar spray of novel organic liquid fertilizers under mango-based agroforestry system and open condition was recorded (Table 1). Effect of spacing on plant height, collar diameter and number of branches per plant at harvest of cowpea was significant under mango based agroforestry system and in open condition. The maximum plant height (47.40 cm), minimum collar diameter (11.94 mm) and number of branches per plant (7.48) were registered in closer spacing (S₁: 30 cm x 30 cm) under mango-based agroforestry system. The minimum plant height (41.04 cm), maximum collar diameter (14.05 mm) and number of branches per plant (8.13) were registered in wider spacing (S₂: 45 cm x 45 cm). Moreover, in open condition, maximum plant height (51.40 cm), minimum collar diameter (14.42 mm) and number of branches per plant (9.09) were noted in closer spacing (S₁: 30 cm x 30 cm) whereas minimum plant height (45.29 cm), maximum collar diameter (16.51 mm) and number of branches per plant (9.94) were observed in S₂: 45 cm x 45 cm (Table 1).

Significantly higher plant height was recorded in closer spacing as compared wider spacing. This might be due to more competition for available resources especially for sunlight (Singh et al., 2013). Furthermore, stems are shaded from light resulting in accumulation of auxin (a growth hormone) that stimulates cell division and elongation of internodes, thereby increasing the height. In widely spaced

Table 1. Growth parameters of cowpea as influenced by spacing and foliar spray of novel organic liquid fertilizers under mango-based agroforestry system and open condition

Treatments	Plant height (cm)		Collar diameter (mm)		No. of branches per plant	
	AF	Open	AF	Open	AF	Open
S: Spacing (S1: 30 cm x 30 cm; S2: 45 cm x 45 cm)						
S ₁	47.40	51.40	11.94	14.42	7.48	9.09
S ₂	41.04	45.29	14.05	16.51	8.13	9.94
CD (p=0.05)	1.66	1.78	0.62	0.59	0.39	0.40
F: Foliar spray of Novel organic liquid fertilizers (F1: Control; F2: Novel (1 %); F3: Novel prime (1%); F4: Novel plus (1%)						
F ₁	41.20	45.14	11.72	14.14	6.78	8.77
F ₂	44.17	48.28	12.96	15.22	7.90	9.42
F ₃	45.45	49.57	13.53	15.70	8.13	9.70
F ₄	46.06	50.41	13.77	16.81	8.43	10.16
CD (p=0.05)	2.34	2.52	0.88	0.84	0.55	0.56
CD (p=0.05) S×F	NS	NS	NS	NS	NS	NS
C.V. %	6.33	6.23	8.12	6.50	8.45	7.04

AF= Agroforestry system (mango-cowpea); NS=Non-significant

plants, auxin destruction by light occurs resulting in plants being shorter in height (Alemayehu et al., 2015). The results are in line with findings of Malami and Sama'il (2012), Rima Taipodia and Nabam (2013) and Adigun et al. (2014) in cowpea; Alemayehu et al. (2015) in haricot bean (*P. vulgaris*), Katara et al. (2022) in kabuli chickpea (*Cicer arietinum*) and Chaudhari et al. (2023) in green gram (*V. radiata*).

However, collar diameter and number of branches per plant were maximum in wider spacing. This might be because of less light competition encourage lateral growth and suppress apical growth resulting in excessive branching. The results are analogues with earlier findings of Ndor et al., (2012) in cowpea; Mureithi et al., (2012) in french bean (*P. vulgaris*), Murade et al. (2014) in urd bean (*V. mungo*), Alemayehu et al. (2015) in haricot bean (*P. vulgaris*), Kalsariya et al. (2017) and Chaudhari et al., (2023) in green gram (*V. radiata*). The plant height, collar diameter and number of branches per plant at harvest of cowpea was significantly influenced by foliar application various novel organic liquid fertilizers. Maximum plant height (46.06 cm), collar diameter (13.77 mm) and number of branches per plant (8.43) were in F_4 : Novel plus (1 %) under mango-based agroforestry system. However, in case of open condition, maximum plant height (50.41 cm), collar diameter (16.81 mm) and no. of branches per plant (10.16) were obtained with F_4 : Novel plus (1 %).

Significantly higher plant height, collar diameter and number of branches were recorded in plants receiving foliar spray of various novel organic liquid nutrients. The increment in plant height and higher number of branches might be due to the fostered meristematic activities which was catalyzed by growth regulator contains in novel organic liquid nutrients viz., gibberellic acid, naphthalene acetic acid and cytokinin which leads to enhance cell division and cell elongation (Desai et al., 2016). This might also be due ample amount of nitrogen content in liquid nutrient which enhances cell division, cell elongation as well as formation of more tissues resulting in luxuriant vegetative growth which leads to increase in plant height (Krishna Chotaliya et al., 2018). Moreover, nitrogen also increases the cation exchange capacity of plant roots which makes them efficient in absorbing other nutrients ions like phosphorus, potassium etc. which helps to terminate vegetative growth (Champaneri et al., 2021). Similar results are also reported by Kavitha et al. (2019), Savaliya (2020) and Rabade et al. (2022) in cowpea; Mandre et al. (2020) in black gram (*V. mungo*), Champaneri et al. (2021) in Indian bean (*Lablab purpureus*), Selvarani et al. (2021) and Akshika Bhawariya et al. (2022) in cluster bean (*C. tetragonoloba*).

The plant height and other growth parameter were higher in open condition as compared to under mango-based

agroforestry system it might be due to sufficient amount of light available to cowpea plants in open condition while, under mango less availability of light suppressed the growth of plants. The interaction effect of different spacing (S) and foliar spray of Novel organic liquid fertilizers (F); S x F was not significant for all growth parameters of cowpea at harvest under mango-based agroforestry system and in open condition.

Cowpea yield: Yield parameters viz., number of clusters per plant, yield per plant (g) and yield ($t ha^{-1}$) of cowpea variety AVCP – 1 as affected by spacing and foliar spray of Novel organic liquid fertilizers under mango-based agroforestry system and open condition was recorded during the (Table 2). Effect of spacing on number of clusters per plant, yield per plant and yield per hectare was found significant under mango-based agroforestry system and in open condition. The maximum number of clusters per plant (23.88), yield per plant (147.77 g), and yield per hectare (3.65 t) was in spacing S_2 : 45 cm x 45 cm under mango-based agroforestry system.

In open condition, number of clusters per plant (27.22), yield per plant (182.44 g), and total yield ($9.01 t ha^{-1}$) were observed in spacing S_2 : 45 cm x 45 cm as compared to S_1 : 30 x 30 cm (Table 2). Significantly the number of clusters per plant, and total yield of cowpea were observed in wider spacing in comparison to closer spacing. This might be due to less competition for light, moisture and nutrients associated with wider spacing and thereby having an edge in producing more reproductive parts when compared to higher plant population density (Karukonda et al., 2020). Higher number of clusters per plant observed might be due to higher number of branches per plant at wider plant spacing as higher number of branches benefits to more sites for flower development, which attributed to a prolific pod production (Alemayehu et al., 2015). These results are in conformity with the earlier findings of Malami and Sama'il (2012), Prabhamani et al. (2019) and Karukonda et al. (2020) in cowpea; Singh et al. (2013) in faba bean (*V. faba*), Alemayehu et al. (2015) in haricot bean (*P. vulgaris*) and Katara et al. (2022) in kabuli chickpea (*C. arietinum*). The foliar spray of Novel organic liquid fertilizers significantly affects the yield parameters of cowpea under mango-based agroforestry system and in open condition.

Under mango-based agroforestry system, number of clusters per plant (21.15), yield per plant (117.11g), and total yield ($3.90 t ha^{-1}$) was recorded with F_4 : Novel plus (1 %) (Table 2). In open condition, number of clusters per plant (25.22) and total yield ($9.82 t ha^{-1}$) was in F_4 : Novel plus (1 %). The significantly the higher number of clusters per plant, yield per plant and total yield of cowpea were in plants receiving foliar spray of various novel organic liquid

Table 2. Yield parameters of cowpea as influenced by spacing and foliar spray of novel organic liquid fertilizers under mango-based agroforestry system and open condition

Treatments	No. of clusters per plant		Yield per plant (g)		Yield (t ha ⁻¹)	
	AF	Open	AF	Open	AF	Open
S: Spacing (S1: 30 cm x 30 cm; S2: 45 cm x 45 cm)						
S ₁	14.21	17.26	55.69	75.98	3.09	8.44
S ₂	23.88	27.22	147.77	182.44	3.65	9.01
CD (p=0.05)	1.82	2.26	6.61	5.20	0.19	0.37
F: Foliar spray of Novel organic liquid fertilizers (F1: Control; F2: Novel (1 %); F3: Novel prime (1 %); F4: Novel plus (1 %))						
F ₁	15.43	18.41	84.71	112.71	2.86	7.56
F ₂	19.44	21.70	96.75	123.09	3.18	8.30
F ₃	20.17	23.64	108.33	136.51	3.54	9.22
F ₄	21.15	25.22	117.11	144.52	3.90	9.82
CD (p=0.05)	3.13	3.20	9.34	7.35	0.28	0.53
CD (p=0.05) S×F	NS	NS	13.21	10.40	NS	NS
C.V. %	13.61	17.21	10.98	6.81	9.76	7.24

AF= Agroforestry system (mango-cowpea); NS=Non-significant

fertilizers. The increase in numbers of pods and yield might be due to a reason of supply of more nutrients at critical stage (i.e., flowering and fruit setting) as various novel organic liquid fertilizers contain macro and micro nutrients. It also improves photosynthetic activity which ultimately enhanced utilization of photosynthates and increased allocation of photosynthates towards the economic part.

Moreover, higher pod yield might be due to vigorous vegetative growth with accelerated photosynthetic activities thereby increasing the supply of carbohydrates to the plants (Selvarani et al., 2021). The spraying of water-soluble nutrients increase uptake of nutrients and water along with easy availability of nutrients, resulting in more photosynthesis and enhanced food accumulation in edible parts. These findings are supported by work of Kavitha et al. (2019), Fernando and Brintha Karunaratna (2020), Savaliya (2020), Mandaliya (2021) and Sakpal et al. (2021) in cowpea; Meena et al. (2017) in urd bean (*V. mungo*), Mandre et al. (2020) in black gram (*V. mungo*), Champaneri et al. (2021) in Indian bean (*Lablab purpureus*), Selvarani et al. (2021) in cluster bean (*C. tetragonoloba*) and Hiremath et al. (2023) in chickpea (*C. arietinum*).

Further, significantly the higher yield of cowpea was produced in open condition as compared to mango-based agroforestry system. The lower yield under more shaded conditions was probably due to poor photosynthetic capacity of plants as they are not receiving proper sunlight under tree canopies. These findings are supported by work of Kaushik et al. (2014), Sharma et al. (2017), Miah et al. (2018), Rahman et al. (2018), Kona et al. (2020), Bony et al. (2021) and Islam et al. (2021).

The interaction effect of different spacing (S) and foliar spray of Novel organic liquid fertilizers (F) was remained non-significant for all yield parameters of cowpea except yield per plant in pooled analysis under mango-based agroforestry system and in open condition. Significantly maximum yield per plant (168.75 and 202.06 g plant⁻¹) was produced by S₂F₄ which was on same bar with S₂F₃ (160.45 and 192.68 g plant⁻¹). However, the minimum yield per plant was in S₁F₁ (49.65 and 64.47 g plant⁻¹) respectively under mango-based agroforestry system and in open condition.

CONCLUSION

Slight reduction in growth and yield parameters of cowpea was observed under mango-based agroforestry system as compared to open growing condition. Growing of cowpea in open condition resulted in significant increase in various growth as well as yield parameters as compared to mango-cowpea agroforestry system. Between two spacing, wider spacing of 45 cm x 45 cm registered overall maximum values of growth and yield parameters of cowpea. Among foliar application of various novel fertilizers, overall highest values of growth and yield parameters of cowpea was registered in foliar application of Novel plus @ 1 % (banana pseudo stem based organic liquid nutrients + botanical pesticides) in both growing conditions.

AUTHOR'S CONTRIBUTION

Mehfuza Patel- Research implementation, data collection; M. B. Tandel- Planning, management, and writing of manuscript; S. M. Patel – trial management; M. K. Desai – Data analysis; M. P. Ahir – Data collection and grouping; Y. A.

Garde – Statistical analysis and interpretation.

REFERENCES

Adigun J, Osipitan AO, Lagoke ST, Adeyemi RO and Afolami SO 2014. Growth and yield performance of cowpea (*Vigna unguiculata* (L.) Walp) as influenced by row-spacing and period of weed interference in South-West Nigeria. *Journal of Agricultural Science* **6**(4): 188-198.

Akshika Bhawariya, Pareek NK, Sunda SL, Shri R and Bhavna Singh Rathore 2022. Effect of foliar application of organics and fertilizers on growth yield and economics of Cluster bean (*Cyamopsis tetragonoloba* L. Taub.). *Biological Forum – An International Journal* **14**(1): 608-613.

Alemayehu Y, Kaweti M and Boki A 2015. Effect of intra-row spacing on haricot bean (*Phaseolus vulgaris* L.) production in humid tropics of Southern Ethiopia. *Journal of Natural Sciences Research* **5**(15): 79-84.

Awasthi OP 2018. Fruit based diversified cropping system: an alternative approach for nutritional and economic security. *Progressive Horticulture* **50**(1&2): 41-46.

Bhusara JB, Thakur NS and Hegde HT 2016. Biological yield and carbon sequestration in prominent traditional agroforestry systems in Valsad District, Gujarat, India. *Indian Journal of Ecology* **43**(1): 318-320.

Bony ZF, Rahman MA, Riyad Z, Saha SR and Zakaria M 2021. Productivity and profitability assessment of Lemon Based Agroforestry systems in Bangladesh. *Asian Research Journal of Agriculture* **14**(2): 42-49.

Champaneri DD, Patel NK, Desai CS and Desai DH 2021. Efficacy of Novel organic liquid nutrient and Novel plus organic liquid nutrient on quantitative traits of Indian bean [*Lablab purpureus* (L.) Sweet]. *International Journal of Plant and Soil Science* **33**(17): 105-115.

Chaudhari PR, Patel KI, Talaviya PL, Patel PD and Patel PM 2023. Effect of different spacings under varying fertility levels on summer Green gram (*Vigna radiata* L.). *The Pharma Innovation Journal* **12**(2): 1027-1032.

Desai CS, Patel JM, Pawar SL, Usadadia VP, Naik VR and Savani NG 2016. *Value Added Products from Banana Pseudostem*. Research Scientist, Soil and Water Management Research Unit, Navsari Agricultural University, Navsari. pp. 55-56.

Fernando WSLV and Brintha Karunarathna 2020. Effect of foliar application of Banana pseudostem sap on yield of Cowpea (*Vigna unguiculata* L. Walp.). *International Letters of Natural Sciences* **79**: 9-15.

Hiremath VS, Surve US, Danawle NJ, Solanke AV, Shelke SR, Patil MR, Gochar PS and Reddy V 2023. Effect of liquid organic formulations on growth, yield and quality of chickpea (*Cicer arietinum* L.). *The Pharma Innovation Journal* **12**(3): 3888-3890.

Islam MM, Rahman A, Farzana Eivy Z, Hasan MM, Alam MJ, Hossain MI, Khan MMH, Topeder MAH, Nahar B, Rahman MM, Das PS and Hossain MM 2021. Agro-economic performance of eggplant as lower storied crop in jackfruit based multistoried agroforestry system in terrace ecosystem of Bangladesh. *International Journal of Natural and Social Sciences* **8**(2): 24-36.

Kalsariya RN, Vekariya PD, Hadiyal JG and Ichchhuda PK 2017. Effect of spacing, fertility levels and bio-fertilizers on growth and yield of summer Greengram (*Vigna radiata* L. Wilczek). *Journal of Pharmacognosy and Phytochemistry* **6**(5): 934-937.

Karukonda G, Pakalpati SR, Ganesh P and Chinmayee Patra 2020. Effects of plant density on yield parameters of Cowpea (*Vigna unguiculata* L.). *International Journal of Chemical Studies* **8**(4): 344-347.

Katara AR, Patel PM, Patel RS and Kumar SGV 2022. Effect of spacing and fertilizer management on growth and yield of kabuli chickpea. *The Pharma Innovation Journal* **11**(4): 550-553.

Kaushik N, Kumari S, Singh S and Kaushik JC 2014. Productivity and economics of different agri-silvi-horti systems under drip irrigation. *Indian Journal of Agricultural Sciences* **84**(10): 1166-1171.

Kavitha MP, Balakumbahan R and Prabukumar G 2019. Effect of foliar spray and fertilizer levels on growth and yield of vegetable cowpea [*Vigna unguiculata* (L.) Walp.]. *Indian Journal of Agricultural Research* **53**(6): 745-748.

Kona KN, Rahman MS, Hossain S, Akter N and Ali MM 2020. Growth and yield of three Turmeric varieties (*Curcuma longa* L.) under mango-based agroforestry. *Asian Plant Research Journal* **5**(1): 29-36.

Krishna Chotaliya, Masaye SS and Anjali Patel 2018. Effect of different levels of nitrogen and novel organic liquid fertilizer on growth and soil properties of Okra *{Abelmoschus esculentus* (L.) Moench} cv. GAO – 5. *International Journal of Chemical Studies* **6**(5): 3077-3081.

Kumar KSA, Lalitha M, Sujatha SK, Nair KM, Hegde R, Singh SK and Mishra BB 2020. Major Soil Types and Classification. In: Mishra, B. (eds) *The Soils of India*. World Soils Book Series. Springer, Cham. pp. 81-108. https://doi.org/10.1007/978-3-030-31082-0_5

Kumar S and Chaturvedi OP 2017. Agroforestry interventions in fruit orchards for improving productivity, profitability and sustainability. In: Doubling Farmers Income Through Horticulture (eds. K.L. Chadha, S.K. Singh, P. Kalia, W.S. Dhillon, T.K. Bahera and J. Prakash). Daya Publishing House, New Delhi, India, pp. 569-576.

Malami BS and Sama'il M 2012. Effects of inter and intra row spacing on growth characteristics and fodder yield of Cowpea (*Vigna unguiculata* (L.) Walp. Var. Kanannado) in the semi-arid North-Western Nigeria. *Nigerian Journal of Basic and Applied Science* **20**(2): 125-129.

Mandalia J 2021. Response of vegetable cowpea [*Vigna unguiculata* (L.) Walp.] to different biostimulants. *Thesis M. Sc. (Horti.)*, Navsari Agricultural University, Navsari, India. pp. 37-60.

Mandre BK, Singh RP, Megha Dubey, Usha Waskle and Birla V 2020. Effect of foliar application of nutrients on growth and yield attributing characters of Black gram. *International Journal of Current Microbiology and Applied Sciences* **9**(2): 419-428.

Meena D, Bhushan C, Shukla A, Chaudhary S and Meena SS 2017. Effect of foliar application of nutrients on biological yield and economics urdbean (*Vigna mungo* (L.) Hepper). *International Journal of Current Microbiology and Applied Sciences* **6**(5): 2658-2662.

Miah MG, Islam MM, Rahman MA, Ahamed T, Islam MR and Jose S 2018. Transformation of jackfruit (*Artocarpus heterophyllus* Lam.) orchard into multistorey agroforestry increases system productivity. *Agroforestry Systems* **92**: 1687-1697.

Murade NB, Patil DB, Jagtap HD and More SM 2014. Effect of spacing and fertilizer levels on growth and yield of Urdbean. *The Bioscan* **9**(4): 1545-1547.

Mureithi DM, Onyango MOA, Jeruto P and Gichimu BM 2012. Response of French bean (*Phaseolus vulgaris* L.) to intra-row spacing in Maseno division, Kenya. *Journal of Applied Science* **12**(1): 96-100.

Ndor E, Dauda NS, Abimuku EO, Azagaku DE and Anzaku H 2012. Effect of phosphorus fertilizer and spacing on growth, nodulation count and yield of Cowpea (*Vigna unguiculata* (L.) Walp) in Southern Guinea Savanna Agroecological Zone, Nigeria. *Asian Journal of Agricultural Sciences* **4**(4): 254-257.

Prabhamani PS, Potdar MP, Halikatti SI and Nawalagatti CM 2019. Effect of different sowing windows and planting geometry on determinate and indeterminate Cowpea genotypes under rainfed conditions. *Journal of Pharmacognosy and Phytochemistry* **8**(1): 2127-2131.

Rabade M, Singh R and Thakur Indu 2022. Response of biofertilizer and foliar spray of organic amendments on the growth and yield of cowpea (*Vigna unguiculata* L.). *The Pharma Innovation Journal* **11**(4): 1417-1420.

Rahman A, Rahman MA, Miah MG, Hoque MA and Rahman MM 2018. Productivity and profitability of jackfruit-eggplant agroforestry system in the terrace ecosystem of Bangladesh. *Turkish Journal of Agriculture - Food Science and Technology* **6**(2): 124-129.

Rima Taipodia and Nabam AT 2013. Impact of time of sowing, spacing and seed rate on potential seed production and fodder quality of Cowpea [*Vigna unguiculata* (L.) Walp]. *IOSR Journal of Agriculture and Veterinary Science* **4**(4): 61-68.

Sakpal VM, Jagtap DN, Upadhyay L, Pinjari SS, More SS, Dhekale JS, Jadhav MS, Rajemahadik VA and Bodake PS 2021. Response of Cowpea (*Vigna unguiculata* L.) to foliar application of different organic sources and levels of fertilizer. *Chemical Science Review and Letter* **10**(38): 269-273.

Savaliya P 2020. *Effect of foliar application of organic and inorganic nutrients on growth, yield and quality of vegetable cowpea*. Thesis M. Sc. (Horti.), Navsari Agricultural University, Navsari, India. pp. 56-72.

Selvarani K, Anushavardhini S, Jose JJ and Mariselvi V 2021. Effect of organic foliar sprays on yield of cluster bean (*Cyamopsis tetragonoloba* L. Taub) cv. Pusa Navbahar. *Acedemic Journals: Scientific Research and Essays* **16**(2): 8-14.

Shaji H, Chandran V and Mathew L 2021. Organic fertilizers as a route to controlled release of nutrients. In: Controlled release fertilizers for sustainable agriculture pp. 41-56.

Sharma B, Tripathi SK, Dhara PK, Pratibha Kumari, Meena SK, Reena Kumari and Kumar A 2017. Comparative study of mango-based agroforestry and mono-cropping system under rainfed condition of West Bengal. *International Journal of Plant & Soil Science* **15**(2): 1-7.

Singh AK, Bhatt BP, Sundaram PK, Gupta AK and Singh D 2013. Planting geometry to optimize growth and productivity in Faba bean (*Vicia faba* L.) and soil fertility. *Journal of Environmental Biology* **34**: 117-122.

Thakur NS, Attar SK and Chauhan RS 2017. Horti-medicinal agroforestry systems: A potential land use for commercial cultivation of medicinal and aromatic plants. In: Gupta S K, Panwar P and Kaushal R (Eds), *Agroforestry for increased production and livelihood security in India*. New India Publishing Agency New Delhi, India. pp. 163-184.

Verma KS and Thakur NS 2010. Economic analysis of ashwagandha (*Withania somnifera* L.) based agroforestry land use systems in mid hills Western Himalayas. *Indian Journal of Agroforestry*, **12**(1): 62-70.

Verma KS and Thakur NS 2011. Economic appraisal of kewach (*Mucuna pruriens*) based agroforestry land-use systems in mid hills of Western Himalayas. *Journal of Non-Timber Forest Products* **18**(1): 47-54.

Received 20 August, 2025; Accepted 04 November, 2025