

Incidence of *Cuscuta* Species on Angiosperm Dicotyledons in Nirmal District in Telangana State, India

Velma Madhu and Nazeer Khan¹

Department of Botany, Government Degree College, Echoda-504 307, India
,Nirmal Forest Range, Sarangapur, Basara Circle, TSFD-504 106, India
E-mail: madhu.kuc@gmail.com

Abstract: The incidence of parasitic *Cuscuta* spp. was observed on 4 angiosperm dicotyledonous host plants species belonging to 30 genera of 22 families were observed with infection of parasitic *Cuscuta* spp. from in the Nirmal district of Telangana State, India. Dominant infection was to Fabaceae family (07 species) followed by Rhamnaceae (03 species) and families Moraceae, Euphorbiaceae, Rutaceae and Verbenaceae, (02 species each). Dominant infected plants belonging to tree categories with 50% (17 species), shrubs infected with 44% (15 species) and least attack on herbs with 6% (02 species).

Keywords: Parasite, *Cuscuta*, Dicotyledonous, Angiosperm, Host plant

Cuscuta L. species commonly parasitic plants known as dodder and this a genus contains over 201 species of yellow, orange, green or red colour. Dodders are holoparasitic plants that enwind stems of host plants and penetrate those by haustoria to connect to the vascular bundles. Having a broad host plant spectrum., *Cuscuta* spp infect nearly all dicot plants, formerly treated as the only genus in the family Cuscutaceae and now is accepted as genus of family Convolvulaceae on the basis of the work of the phylogeny group of angiosperms. The genus is found throughout the world, with the greatest species diversity in tropical and subtropical regions, the genus becomes rare in cool temperate climates. The life cycle of *Cuscuta* parasite include, seed germination, early development of the seedling, and search for a host plant, haustorium induction and invasion of the host, haustorium maturation and interaction with the host plant (Yoder 1999). Parasite plants have diversified, and the evolution of *Cuscuta* appears to be completely different from other root parasite plants (Heide-Jørgensen 2008). Epiparasitic myco-heterotrophic plants appear to be evolved from mutualistic myco-heterotrophic plants (Merckx et al., 2009). Sakshi et al. (2024) provided detailed review on *Cuscuta reflexa* Roxb. In India, *Cuscuta* spp. poses a serious problem in oilseed niger (*Guizotia abyssinica*), linseed (*Linum usitatissimum*) and blackgram (*Vigna mungo*), greengram (*Vigna radiata*), chickpea (*Cicer arietinum*) and fodder crops lucerne (*Medicago sativa*) and berseem (*Trifolium* spp.) under rainfed as well as in irrigated conditions. Legislation in 25 countries lists the dodder as "declared noxious weed" with seeds and plant material denied entrance. In the, *Cuscuta* spp is the only weed seed whose movement is prohibited in United States. The wide geographical distribution of dodder species and wide host

range, listed among the most damaging parasites. In present study the incidence of *Cuscuta* L. on angiosperm dicotyledons in Nirmal District in Telangana State, India was recorded.

MATERIAL AND METHODS

The Nirmal district situated in at latitude 19.096413° N and longitude 78.342972° E, on east Manchiryal district north by Adilabad. and Uttoor divisions on the south by Jagithyal and Nizamabad districts and on the west by Nanded district of Maharashtra State (Fig. 1). The most important river that drains the divisions is Godavari, which is the largest river in peninsular India. The Kadam vagu is tributary of the Godavari. Besides these Swarna vagu, and Sudda vagu drain the division. The average annual normal rain fall of the Nirmal district is 1107.2 mm and average number of rainy days in the year is 55 – 63 days. The forest of this district falls under tropical dry deciduous and tropical thorn forest type's consisting of mixed teak. From June 2022 to March 2025, a comprehensive survey was conducted throughout the Nirmal district, covering locations such as Timmapur, Dehagam, Bhainsa, Valegam, Ranapur, Mamada, Pichara, Thandra, Jam, Kadama, and the surrounding forest region. The study explores a list of 34 plants belong to 22 different families of dicot plants and include trees, shrubs and herbs. The identification was done according to Bentham & Hooker (1862-1883) classification.

RESULTS AND DISCUSSION

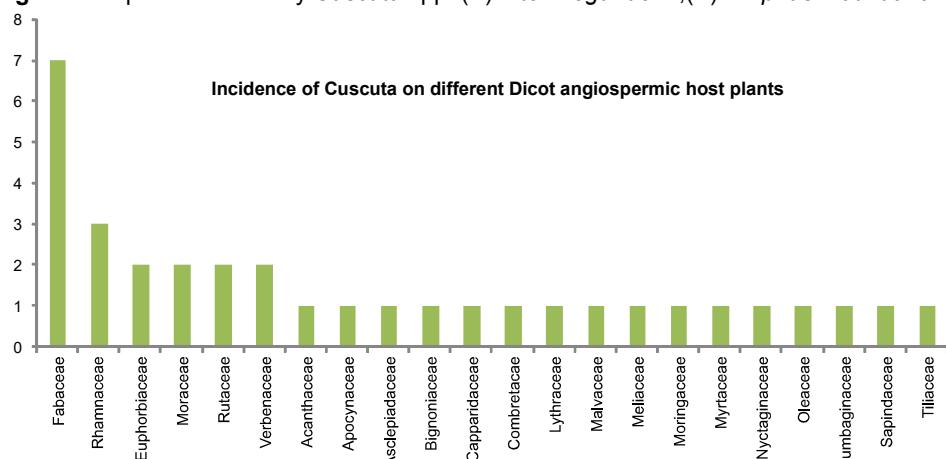
The incidence of *Cuscuta* spp. was observed on 34 angiospermic dicotyledonous host plants belonging to 30 genera of 22 families (Table 1). The incidence of *Cuscuta* spp. was more on Fabaceae family (affecting seven species

belonging to six genera), followed by Rhamnaceae (03 species belonging to single genus *Zizyphus*) and Moraceae, Euphorbiaceae, Rutaceae and Verbenaceae, (02 species each). Remaining 16 families viz. Acanthaceae, Apocynaceae, Asclepiadaceae, Bignoniaceae, Capparidaceae, Combretaceae, Lythraceae, Malvaceae, Meliaceae, Moringaceae, Myrtaceae, Nyctaginaceae, Oleaceae, Plumbaginaceae, Sapindaceae and Tiliaceae infested with single plant species each (Fig. 2).

Predominantly, incidence was severe on the genus *Ziziphus* (Family Rhamnaceae) with three species namely *Z. mauritiana* Lam., *Z. oenoplia* (L.) Mill. *Z. xylopyrus* (Retz.) Willd. and genera *Ficus* (Moraceae) and *Vachellia* (Fabaceae) with two species each namely *F. benghalensis* L., *F. virens* L. *V. nilotica* (L.) P.J.H.Hurter & Mabb. and *V. leucophloea* (Roxb.) Maslin, Seigler & Ebinger respectively. Seven species of Fabaceae family infected with *Cuscuta* are *Albizia lebbeck* (L.) Willd, *Butea monosperma* (Lam.) Taub.,

Table 1. Angiosperm dicotyledonous plant species infected with parasitic *Cuscuta* plant

Scientific name	Family	Local name	Categories of plants
<i>Albizia lebbeck</i> (L.) Willd	Fabaceae	Dirisena	Tree
<i>Aegle marmelos</i> (L) Corr.	Rutaceae	Maredu	Tree
<i>Azadirachta indica</i> Juss.	Meliaceae	Vepa	Tree
<i>Bougainvillea spectabilis</i> Willd.	Nyctaginaceae	Kagithampulu	Climbing Shrub
<i>Butea monosperma</i> (Lam.) Taub.	Fabaceae	Modugu	Tree
<i>Calotropis procera</i> (Ait.) R.Br.	Asclepiadaceae	Jilledu	Shrub
<i>Capparis zeylanica</i> L.	Capparidaceae	Uppi teega	Climbing Shrub
<i>Corchorus trilocularis</i> L.	Tiliaceae	Parinta Koora	Herb
<i>Dalbergia sissoo</i> Roxb.	Fabaceae	Shisham	Tree
<i>Ficus benghalensis</i> L.	Moraceae	Marri Chettu	Tree
<i>Ficus virens</i> L.	Moraceae	Juvvi Chettu	Tree
<i>Hibiscus rosa-sinensis</i> L.	Malvaceae	Mandara	Shrub
<i>Lantana camara</i> L.	Verbenaceae	Parasu Kampa	Shrub
<i>Millingtonia hortensis</i> L.	Bignoniaceae	Sadac malle	Tree
<i>Moringa olifera</i> Lam.	Moringaceae	Munaga Chettu	Tree
<i>Murraya paniculata</i> (L.) Jack.	Rutaceae	Nagagolungu	Perennial shrub
<i>Nerium oleander</i> (L.)	Apocynaceae	Ganneru	Shrub
<i>Nyctanthes arbor-tristis</i> L.	Oleaceae	Parijatham	Shrub
<i>Phyllanthus reticulatus</i> Poir.	Euphorbiaceae	Puli Chettu	Shrub
<i>Pithecellobium dulce</i> (Roxb.) Benth.	Fabaceae	Seema Chintha	Tree
<i>Plumbago zeylanica</i> L	Plumbaginaceae	Chitra Moolam	Shrub
<i>Punica granatum</i> L.	Lythraceae	Danimma	Shrub
<i>Ricinus communis</i> L.	Euphorbiaceae	Amudamu	Shrub
<i>Ruellia tuberosa</i> L.	Acanthaceae	Chitapata Kayala chettu	Herb
<i>Sapindus emarginatus</i> Vahl	Sapindaceae	Kunkudu Kayalu	Tree
<i>Syzygium cumini</i> (L.) Skeels	Myrtaceae	Alla neredu	Tree
<i>Tamarindus indica</i> L.	Fabaceae	Chinta	Tree
<i>Terminalia tomentosa</i> Wight & Arn.	Combretaceae	Nallamaddi	Tree
<i>Vachellia nilotica</i> (L.) P.J.H.Hurter & Mabb.	Fabaceae	NallaTumma	Tree
<i>Vachellia leucophloea</i> (Roxb.) Maslin, Seigler & Ebinger	Fabaceae	Tella tumma	Tree
<i>Vitex negundo</i> L.	Verbenaceae	Vavili	Shrub
<i>Ziziphus mauritiana</i> Lam.-	Rhamnaceae	Jitti Nerachettu	Evergreen Shrub
<i>Ziziphus oenoplia</i> (L.) Mill.	Rhamnaceae	Pariki	Shrub
<i>Ziziphus xylopyrus</i> (Retz.) Willd.	Rhamnaceae	Gotti Chettu	Tree


Fig. 1. Location of study area map

Dalbergia sissoo Roxb., *Pithecellobium dulce* (Roxb.) Benth., *Tamarindus indica* L., *Vachellia nilotica* (L.) P.J.H.Hurter & Mabb. and *V. leucophloea* (Roxb.) Maslin, Seigler & Ebinger (Fig. 2). Dominant infected plants belonging to tree categories (50%) followed by shrubs (44%) and herbs (6%).

Abubacker et al. (2005) observed that *Cuscuta* spp. have unique glandular cells that help the parasite adhere to the host and this explains why primarily observed on *Z. mauritiana* Lamk's rough bark. After dividing and spreading outward like a collar around the host plant, these cells pierce the phloem. Sarma et. al. (2008) also observed the same trend. The invasion is facilitated by habitat disturbance and climate change, which produce favorable conditions in new locations. In many regions of the world, at least a few species of *Cuscuta* are regarded as a major invasive danger due to their aggressive behavior, ability to disturb local ecosystems, and potential to reduce agricultural production (Parker 2012)

Fig. 2. Host plant attacked by *Cuscuta* spp. (A) *Vitex negundo* L., (B) *Ziziphus mauritiana* Lam.

Fig. 3. Angiospermic dicotyledonous plant species infected by *Cuscuta* spp. in a family-wise manner in Nirmal district

CONCLUSION

Cuscuta species do not have a specific host and can even flourish by consuming the least quantity of nutrients and water from the host. It impairs or hinders the host's ability to grow and develop normally. The Fabaceae host plants ensured a very quick attachment and short lag phase of the parasite, likely because of the family's presumably higher nitrogen content and the high nitrogen requirements of *Cuscuta* genus members. *Cuscuta* spp. management is challenging in agriculture and the environment because of their parasitic nature. Phytosanitary management and prevention appears to be the most crucial step in preventing future infestations.

REFERENCES

- Abubacker MN, Prince M and Hariharan Y 2005. Histochemical and biochemical studies of parasite-host interaction of *Cassytha filiformis* Linn. and *Zizyphus jujuba* Lamk. *Current Science* **89**: 2156-2158.
- Albert M, Kaiser B, Van Der Krol S and Kaldenhoff R 2010. Calcium signaling during the plant-plant interaction of parasitic *Cuscuta reflexa* with its hosts. *Plant Signaling and Behaviour* **5**: 1144-1146.
- Bentham G and Hooker JD 1862-1883. *Genera plantarum*, Vols 1-3. Black, Pamplin, Reeve, Williams & Norgate, London.
- Birschwilks M, Haupt S, Hofius D and Neumann S 2006. Transfer of phloemmobile substances from the host plants to the holoparasite *Cuscuta* sp. *Journal of Experimental Botany* **57**: 911921.
- Capderon M, Fer A and Ozenda P 1985. About an unreported system leading to the expulsion of a parasite-*Cuscuta* on cotton-plant (*Cuscuta lupuliformis* Krock on *Gossypium hirsutum* L.). *Comptes Rendus de l'Académie des Sciences - Series III - Sciences de la Vie* **300**: 227-232.
- Chang M and Lynn DG 1986. The haustorium and the chemistry of host recognition in parasitic angiosperms. *Journal of Chemical Ecology* **12**: 561-579.
- Christensen NM, Dörr I, Hansen M, van der Kooij TAW and Schulz A 2003. Development of *Cuscuta* species on a partially incompatible host: induction of xylem transfer cells. *Protoplasma* **220**: 131-142.
- David-Schwartz R, Runo S, Townsley B, Machuka J and Sinha N 2008. Longdistance transport of mRNA via parenchyma cells and phloem across the host-parasite junction in *Cuscuta*. *New Phytologist* **179**: 1133-1141.
- Dörr I 1969. Fine structure of intracellular growing *Cuscuta*-Hyphae. *Protoplasma* **67**: 123-137.
- Estabrook EM and Yoder JI 1998. Plant-plant communications: Rhizosphere signaling between parasitic angiosperms and their hosts. *Plant Physiology* **116**: 1-7.
- Farah A and Al-Abdulsalam M 2004. Effect of field dodder (*Cuscuta campestris* Yuncker) on some legume crops. *Scientific Journal of King Faisal University* **5**: 103-113.
- Hooker JD 1872-1897. *The Flora of British India*. Volume 4: 225-227, L Reeve & Co. London.
- Kumar RM and Kondap SM 1993. Response of greengram and blackgram cultivars to *Cuscuta* infestation. *Indian Journal of Plant Protection* **21**(2): 167-171.
- Lee KB and Lee CD 1989. The structure and development of the haustorium in *Cuscuta australis*. *Canadian Journal of Botany* **67**: 2975-2982.
- Marambe B, Wijesundara S, Tennakoon K, Pindeniya D and Jayasinghe C 2002. Growth and development of *Cuscuta chinensis* Lam. and its impact on selected crops. *Weed Biology and Management* **2**: 79-83.
- Masanga J, Oduor R, Alakonya A, Ngugi M, Ojola P, Bellis ES and Runo S 2012. Comparative phylogeographic analysis of *Cuscuta campestris* and *Cuscuta reflexa* in Kenya: Implications for management of highly invasive vines. *Plants People Planet* **4**: 182-193.
- Mishra JS, Bhan, Manish, Moorthy BTS and Yaduraju NT 2003. Effect of seeding depth on emergence of *Cuscuta* with linseed and summer blackgram. *Indian Journal of Weed Science* **35**: 281-282.
- Parker C 2012. Parasitic weeds: A world challenge. *Weed Science* **60**: 269-276.
- Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B, David Schwartz R and Sinha NR 2014. De novo assembly and characterization of the transcriptome of the parasitic weed *Cuscuta pentagona* identifies genes associated with plant parasitism. *Plant Physiology* **166**: 1186-1199.
- Roney JK, Khatibi PA and Westwood JH 2007. Cross-species translocation of mRNA from host plants into the parasitic plant dodder. *Plant Physiology* **143**: 1037-1043.
- Rubiales D, Perez-de-Luque A, Joel DM, Alcantara C and Sillero JC 2003. Characterization of resistance in chickpea to crenate broomrape (*Orobanche crenata*). *Weed Science* **51**: 702-707.
- Sakshi S, Kamde, Shailju G, Gurunani, Anushree V, Shegaonkar, Rutuja N, Bhadange, Chetana A and Lahariya 2024. Review on *Cuscuta Reflexa* Roxb. A Miraculous Medicinal Parasitic Herb, *International Journal of Creative Research Thoughts* **12**: 2320-2882.
- Sarma H, Sarma CM and Bhattacharjy DK 2008. Host Specificity of *Cuscuta reflexa* Roxb. In the Manas Biosphere Reserve, Indo-Burma Hotspot. *International Journal of Plant Production* **2**(2): 175-180.
- Sher MA and Shad RA 1989. Distribution, hosts and measures to control dodder. *Pest Management Science* **9**: 17-20.
- Vaughn KC 2003. Dodder hyphae invade the host: A structural and immunocytochemical characterization. *Protoplasma* **220**: 189-200.
- Vardhana Rashtra 2007. Plants havoc by *Cuscuta* spp. In district meerut UP. *Plant Archives* **7**(2): 917-918.
- Werner M, Uehlein N, Proksch P and Kaldenhoff R 2001. Characterization of two tomato aquaporins and expression during the incompatible interaction of tomato with the plant parasite *Cuscuta reflexa*. *Planta* **213**: 550-555.
- Westwood JH, Roney JK, Khatibi PA and Stromberg VK 2009. RNA translocation between parasitic plants and their hosts. *Pest Management Science* **65**: 533-539.
- Yoshida S and Shirasu K 2009. Multiple layers of incompatibility to the parasitic witchweed, *Striga hermonthica*. *New Phytologist* **183**: 180-189.
- Zhang TY 1985. A forma specialist of *Colletotrichum gloeosporioides* on *Cuscuta* spp. *Acta Mycologica Sinica* **4**: 234-239.