

Effect of Different Diet Formulations on Adult Emergence of *Corcyra cephalonica* (Stainton)

N. Lavanya, N. Srinivasa Rao¹, G. Guru Pirasanna Pandi², Rathod Parashuram and Maddala Madhavi³

¹National Institute of Plant Health Management, Hyderabad-500 030, India

¹Acharya NG Ranga Agricultural University, RARS, Maruturu-534 122, India

²ICAR-National Bureau of Plant Genetic Resources, Regional Station, Hyderabad-500 030, India

³Department of Zoology, Osmania University, Hyderabad-500 007, India

E-mail: 16lkiran@gmail.com

Abstract: Experiment was conducted to evaluate the efficacy of various diet formulations on the adult emergence of *Corcyra cephalonica*, an important factitious host used in biological control programs. Ten different diets, including five solo grains (sorghum, maize, bajra, ragi, and broken rice) and five additive-enriched combinations (with groundnut powder and yeast), were tested under controlled conditions. Data on adult emergence were recorded weekly for five weeks. Among the diets, bajra and sorghum with additives resulted in the highest moth emergence (1294.3 adults), followed by bajra alone (1156.7) and maize + sorghum + additives (1007.0), whereas broken rice yielded the lowest moth emergence. These results confirm that dietary additives significantly enhance the reproductive performance of *C. cephalonica* and can be recommended for cost-effective mass rearing in biocontrol programs.

Keywords: Additives, Adult emergence, *Corcyra cephalonica*, Host diet, Mass rearing, Biocontrol

Biological control has been employed for over a century to manage various insect pests (Dhawan 2007, Sampaio 2010 and Dhaliwal et al., 2010). It is widely recognized as an eco-friendly and sustainable alternative to chemical control, especially in light of the environmental and health hazards associated with the indiscriminate use of pesticides. In recent years, the adoption of biological control has gained significant momentum, particularly with the increased emphasis on Integrated Pest Management (IPM) strategies (Dhawan 2007, Dhaliwal et al., 2010, Dhawan et al., 2013, Stenberg 2017). Among the multiple approaches to biological control, augmentative release preceded by laboratory mass rearing has been proven effective in several cropping systems, including protected cultivation (Van Lenteren 2012, Brodeur et al., 2018). Successful implementation of these programs requires efficient mass production and conservation of beneficial organisms (Padhy et al., 2020). In India, the rice meal moth, *C. cephalonica* (Stainton), is extensively used as a factitious host for mass rearing of egg parasitoids such as *Trichogramma spp.* (Bernardi et al., 2000, Gauraha and Deole 2016). Various cereal grains including rice, maize, wheat, sorghum, and pearl millet have been evaluated for their suitability in rearing *C. cephalonica*, with differing opinions reported in earlier studies (Pathak et al., 2010, Gauraha and Deole 2016, Nasrin et al., 2016, Jhala et al., 2019, Jitendra Kumar et al., 2025). The nutritional composition of the larval diet plays a crucial role in determining the quality and quantity of host eggs produced, which directly influences the field performance of released

parasitoids (Hunter 2003). Hence, diet optimization is critical for both host production and the performance of natural enemies. In this context, the present study was conducted undertaken under laboratory conditions to assess the impact of different diet formulations, comprising solo grains and grain mixtures with nutritional additives on the adult emergence of *C. cephalonica*.

MATERIAL AND METHODS

The experiment was conducted under laboratory conditions at the Centre for Biological Control (CBC), National Institute of Plant Health Management (NIPHM), Rajendranagar, Hyderabad during 2022. Ten dietary treatments were evaluated consisting of five solo cereal grains: sorghum, maize, bajra, ragi, and broken rice and five combinations with additives. Each combination included two grains mixed in a 1:1 ratio and each supplemented with 40 g groundnut kernel powder and 5 g dry yeast per kg of diet. The treatments were sorghum, maize, bajra, ragi, broken rice, bajra + sorghum + additives, maize + sorghum + additives, sorghum + broken rice + additives, ragi + bajra + additives and bajra + broken rice + additives. Each treatment was replicated three times. The grains were cleaned, coarsely ground to 2–3 fragments, and sterilized at 100°C for one hour to eliminate microbial contaminants. After cooling, 1 kg of each diet was placed in individual plastic tubs. Additive mixtures were incorporated into the relevant diet treatments before infestation.

Each tub was inoculated with *C. cephalonica* eggs at a

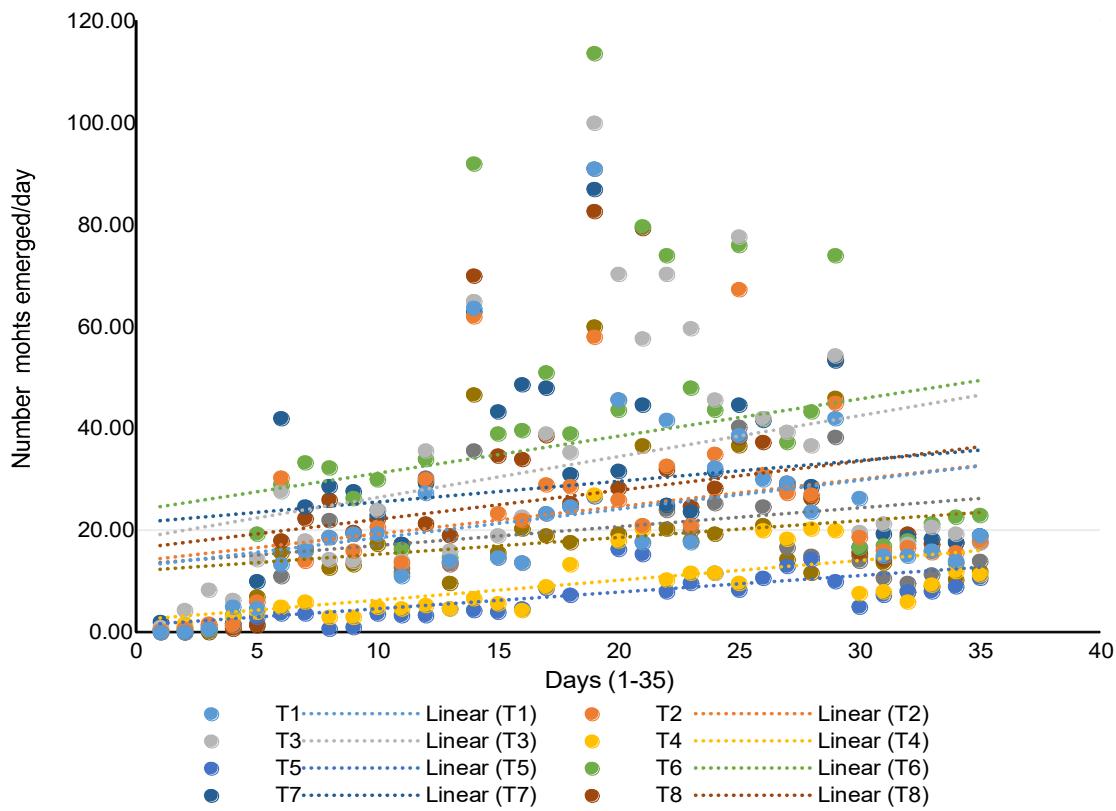
rate of 800 eggs (0.05 cc) per kg of diet, obtained from the insect culture maintained at Prof. Jayasankar Telangana State Agricultural University (PJTSAU), Hyderabad. The tubs were covered with muslin cloth secured with rubber bands and arranged on iron racks under laboratory conditions (temperature: $25\pm1^{\circ}\text{C}$; RH: $70\pm5\%$; photo period: 14:10 h L:D). Adult moth emergence was monitored daily beginning on the 34th day after inoculation. Emerged moths were collected using specimen tubes, transferred to ovipositional cages and weekly cumulative emergence data were recorded for five consecutive weeks. Data were analyzed and treatment means were separated with Tukey's HSD using SPSS statistical software.

RESULTS AND DISCUSSION

The adult emergence of *C. cephalonica* was recorded weekly across all ten treatments for five consecutive weeks. The results showed significant differences in moth emergence among diets. During the first week, the highest adult emergence was observed in bajra + sorghum + additives with 86.00 moths, followed closely by bajra (83.3 adults) and maize + sorghum + additives (82.7 adults). The lowest adult emergence was observed in broken rice (13.0) and ragi (19.0).

In the second week, again bajra + sorghum + additives recorded the highest emergence (245.67), followed by maize + sorghum + additives and sorghum + broken rice +

additives. Broken rice recorded lowest emergence (21.00). Similar trends continued in the subsequent weeks, with bajra + sorghum + additives consistently producing the maximum number of adults, peaking at 405.7 moths in the third week followed by bajra, maize + sorghum + additives, and sorghum + broken rice + additives. Broken rice and Ragi consistently yielded the fewest adults.


Adult emergence during the fourth week was highest in bajra (375.00) and bajra + sorghum + additives (364.33), followed by maize + sorghum + additives, sorghum + broken rice + additives, maize, and sorghum. In the fifth week, bajra + sorghum + additives recorded the maximum emergence (192.67 moths), followed by Bajra, maize + sorghum + additives, and sorghum + broken rice + additives (155.67). In contrast, broken rice consistently registered the lowest adult emergence across all five weeks. The daily emergence pattern over the 35-day period indicates the superior performance of bajra + sorghum + additives and bajra as reflected in their linear trend lines compared with the other diet treatments (Fig. 1).

The pooled analysis across five weeks further confirmed the superiority of additive-enriched diets. bajra + sorghum + additives with maximum cumulative emergence (1294.33 moths), followed by bajra, maize + sorghum + additives with 1007.00, and sorghum + broken rice + additives. Solo grain cereal diets such as sorghum and maize recorded moderate

Table 1. Weekly adult emergence of *C. cephalonica* on different diet formulations

Treatment	Adult emergence in different weeks (Numbers)					Total
	Week '1'	Week '2'	Week '3'	Week '4'	Week '5'	
T1 - Sorghum (S)	36.33 ^c (6.01)	173.33 ^{bc} (13.16)	230.67 ^c (15.11)	213.33 ^b (14.59)	147.33 ^b (12.12)	801.00 ^d (28.27)
T2- Maize (M)	54.33 ^b (7.33)	174.67 ^{bc} (13.19)	208.00 ^c (14.41)	241.33 ^b (15.53)	145.67 ^{bc} (12.07)	824.00 ^d (28.70)
T3- Bajra(B)	83.33 ^a (9.04)	183.00 ^{bc} (13.51)	344.00 ^{ab} (18.51)	375.00 ^a (19.36)	171.33 ^{ab} (13.08)	1156.67 ^b (34.01)
T4 – Ragi (R)	19.00 ^d (4.35)	32.33 ^e (5.68)	97.67 ^d (9.88)	102.00 ^d (10.10)	74.33 ^e (8.53)	325.3f (18.01)
T5 - Broken Rice (BR)	13.00 ^d (3.60)	21.00 ^e (4.53)	83.00 ^d (9.10)	75.67 ^e (8.69)	58.00 ^e (7.61)	250.67 ^g (15.83)
T6 - B+ S + Additives	86.00 ^a (9.27)	245.67 ^a (15.67)	405.67 ^a (20.13)	364.33 ^a (19.07)	192.67 ^a (13.84)	1294.33 ^a (35.97)
T7 - M+S+ Additives	82.67 ^a (9.09)	202.67 ^b (14.21)	334.33 ^b (18.28)	224.33 ^b (14.97)	163.00 ^{ab} (12.76)	1007.00 ^c (31.72)
T8 - S+BR+ Additives	42.67 ^{bc} (6.50)	195.67 ^b (13.99)	323.00 ^b (17.96)	216.33 ^b (14.71)	155.67 ^{ab} (12.47)	933.33 ^c (30.55)
T9 – R+B + Additives	31.67 ^c (5.62)	157.33 ^{cd} (12.53)	212.67 ^c (14.55)	166.00 ^c (12.87)	111.67 ^d (10.56)	679.33 ^e (26.06)
T10 - B+BR + Additives	41.00 ^{bc} (6.39)	141.00 ^d (11.87)	188.67 ^c (13.72)	141.33 ^c (11.88)	114.00 ^{cd} (10.68)	626.00 ^e (25.01)
'p-Value'	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
'Tukey HSD at 5%'	1.658	1.119	1.632	1.006	1.409	1.675

Figures in the parentheses are arc sin transformed values. Column values with same superscripts do not differ significantly

Fig. 1. Moth emergence in treatments during study period (day wise)

performance and were statistically at par. The lowest emergence was observed in broken rice with 250.67 moths and was significantly inferior.

The results suggest that diets containing additives significantly improved the emergence and development of *C. cephalonica*. Nutrient-enriched media likely improved moth performance by supplying essential proteins, vitamins, and micronutrients necessary for larval growth and successful pupation. Bait additives, groundnut powder and yeast provide essential amino acids, fatty acids, and B-complex vitamins needed for larval development. These additives enhance digestibility and assimilation of nutrients, improving feed conversion efficiency. The balanced nutrition reduces larval mortality, accelerates growth, and supports successful pupation. Lipids and sterols from groundnut and yeast also aid hormone synthesis required for metamorphosis, thereby ensuring better adult survival and emergence (Nasrin et al., 2016, Jhala et al., 2019, Kaur et al., 2024). The superior performance of Bajra + Sorghum + additives can be attributed to the synergistic nutritional effects of bajra, sorghum, groundnut powder and yeast. Conversely, the inferior performance of broken rice may be due to the low non-starch polysaccharide (NSP) content in broken rice, which affects nutrient utilization and digestibility.

The findings corroborate earlier reports that highlighted the positive influence of protein-rich and yeast-supplemented diets on the reproductive output of *C. cephalonica* (Sathpathy et al., 2003, Pathak et al., 2010, Kumar et al., 2019, Jitendra Kumar et al., 2025). Arun Kumar et al. (2018) and Mehendale et al. (2014) also recorded enhanced emergence and fitness in moths reared on sorghum and additive-based media.

CONCLUSION

Among the tested diets, bajra + sorghum supplemented with groundnut kernel powder and yeast proved to be the most effective formulations for supporting adult emergence of *C. cephalonica*. Diets enriched with nutritional supplements significantly outperformed solo cereals, indicating their potential use in large-scale and cost-effective mass rearing for biological control programs.

REFERENCES

- Arun Kumar KM, Tambe VJ, Rehman SK, Choudhuri BN and Thakur KD 2018. Effect of different diets on the biology of rice moth, *Corcyra cephalonica* (Stainton). *Journal of Entomology and Zoology Studies* **6**(3): 251-254.
- Bernardi EB, Haddad ML and Parra JRP 2000. Comparison of artificial diets for rearing *Corcyra cephalonica* (Stainton, 1865) (Lepidoptera: Pyralidae) for *Trichogramma* mass production. *Revista Brasileira de Biologia* **60**(1): 45-52.

Brodeur J, Abram PK, Heimpel GE and Messing RH 2018. Trends in biological control public interest, international networking& research direction. *BioControl* **63**(1): 11-26.

Dhaliwal GS, Jindal V and Dhawan AK 2010. Insect pest problems and crop losses: changing trends. *Indian Journal of Ecology* **37**(1): 1-7.

Dhawan AK 2007. Integrated Pest Management: Concept, Opportunities and Challenges. *Indian Journal of Ecology* **34**: 100-109.

Dhawan AK, Vijay Kumar and Shera PS 2013. Ecological Perspectives in Pest Management for Sustainable IPM. *Indian Journal of Ecology* **40**(2): 167-177.

Gauraha R and Deole S 2016. Effect of different diets on growth and development of rice moth, *Corcyra cephalonica* (Stainton). *Advances in Life Sciences* **5**(22): 10247-10251.

Hunter MD 2003. Effects of plant quality on the population ecology of parasitoids. *Agricultural and Forest Entomology* **5**(1): 1-8.

Jhala J, Vyas AK, Rajput VS and Sharma S 2019. Biology of rice moth (*Corcyra cephalonica* Stainton) on different host (maize, rice, pearl millet, wheat and sorghum). *Journal of Pharmacognosy and Phytochemistry* **8**(5): 476-479.

Jitendra Kumar, Pranaj Neog, Biplove Bala, Imtinaro L Jamir, Susanta Banik and Gohain T 2025. Effect of Different Hosts on the Growth and Development of Rice Moth (*Corcyra cephalonica*). *Environment and Ecology* **43**: 547-551.

Kaur L, Kalkal D, Jakhar A, Yadav S and Sheoran N 2024. Impact of diet composition of *Corcyra cephalonica* (Lepidoptera: Pyralidae) on the development and reproduction of *Trichogramma chilonis* (Hymenoptera: Trichogrammatidae). *Journal of Biological Control* **38**(2): 214-219.

Kumar R, Kumar A, Singh R, Singh J, Kumar A and Singh V P 2019. Study on different diets on the biological parameters of rice moth *Corcyra cephalonica* (Stainton). *International Journal Agricultural Invention* **4**(1): 49-54.

Low AG 1985 Role of dietary fibre in pig diets, pp. 87-112. In: Haresign W, Cole DJA (eds). *Recent Advances in Animal Nutrition*, Butterworths, London.

Mehendale SK, Patel MB and Shinde CU 2014. Evaluation of different rearing media for *Corcyra cephalonica* under laboratory condition. *Bioscan* **9**: 259-264.

Nasrin M, Alam MZ, Alam SN, Miah MRU and Hossain MM 2016. Effect of various cereals on the development of *Corcyra cephalonica* (Stainton) and its egg parasitoid *Trichogramma chilonis* (Ishii). *Bangladesh Journal of Agricultural Research* **41**(1): 183-194.

Padhy D, Ramlakshmi V, Dash L and Sahu AK 2020. Recent advances in rearing of the laboratory host-rice moth, *Corcyra cephalonica*. *Indian Journal of Pure and Applied Biosciences* **8**(6): 501-510.

Pathak SK, Dubey MN and Yadav PR 2010. Suitability of different diet and their combination for the rearing of Trichogramma host *Corcyra cephalonica*. *Journal of Experimental Zoology India* **13**(2): 409-413.

Sampaio MV, Bueno VHP, Silveira LCP and Auad AM 2010 Biological control of insect pests in the tropics. pp 28-70. In: *Tropical Biology and Conservation Management*, EOLSS Publishers, Oxford

Sathpathy S, De N and Rai S 2003. Suitable rearing medium for rice grain moth (*Corcyra cephalonica*). *Indian Journal of Agricultural Sciences* **73**(6): 331-333.

Stenberg JA 2017. A conceptual framework for integrated pest management. *Trends Plant Sciences* **22**(9): 759-769.

Van Lenteren JC 2012. The state of commercial augmentative biological control: plenty of natural enemies, but a frustrating lack of uptake. *BioControl* **57**(1): 1-20.

Received 28 August, 2025; Accepted 03 November, 2025