

Molecular Characterization of *Bacillus thuringiensis* Strains from Native Soils in Southern Zone of Andhra Pradesh, India

Devaki Kayam, MuraliKrishna Tirupati, P.N. Harathi and U. Venkateswarlu

ANGRAU-Regional Agricultural Research Station, Tirupati-517 502, India
E-mail: k.devaki@angrau.ac.in

Abstract: In search of novel insecticidal *Bacillus thuringiensis* strains effective against *Spodoptera litura*, a total of 44 cultures were isolated from 205 soil samples collected in Nellore district, Andhra Pradesh, India and evaluated against third instar *Spodoptera litura*. The isolates exhibiting more than 50 per cent larval mortality were chosen for molecular characterization with 14 *cry* gene primers specific to Lepidoptera. The bioassay studies indicated that, larval mortality of 86.67 per cent was observed with N30 at 168h after treatment, followed by N3 with 83.33 per cent which were comparable with standard check HD-1 (96.67%). The Other promising isolates, N44, N48 (%), N58 (%), N93 (%), N115 (%) and N141 which were statistically on par with each other. Molecular characterization of virulent *B. thuringiensis* strains with *cry* gene specific primers indicated that *cry11* gene was predominant in present *B. thuringiensis* collection and it was reported from seven (N20, N23, N30, N63, N93, N141, N143) strains. The most effective strain, N30 harboured a combination of three *cry* genes i.e., *cry1*, *cry2* and *cry9*. N3 contained only one *cry* gene (*cry1C*). Among the 19 strains characterized, N93 possessed the highest diversity with five *cry* genes (*cry1Aa*, *cry1C*, *cry11*, *cry2A(a)1*, *cry9Ca1*). The study identified potential *B. thuringiensis* strains with diverse *cry* gene profiles encoding insecticidal crystal proteins. The presence of multiple *cry* genes (*cry1*, *cry2* and *cry9*) in N30 likely contributed to its superior efficacy against test insect, *S. litura*. This strain shows promise for development into a cost effective *B. thuringiensis* formulation for use as a biopesticide and may also serve as a valuable resource for developing *Bt* transgenic crop plants.

Keywords: *Bacillus thuringiensis*, *Cry* genes, Environmental isolates, *Spodoptera litura*

Bacillus thuringiensis (Berliner) is an agriculturally important microbe having key role in biocontrol of insect pests. The bacterium produces specific crystalline protein inclusions (δ -endotoxin) during sporulation, which are toxic to insect pests belong to the orders Lepidoptera, Coleoptera, Diptera, Hymenoptera, Homoptera, Orthoptera and Mallophaga (Alsaedi et al., 2017). This unique insecticidal property has made *B. thuringiensis* the most widely used microbial biopesticide in the world market. In addition to δ -endotoxins, *B. thuringiensis* also synthesizes insecticidal proteins during its vegetative growth phase, which are subsequently secreted into the culture medium. These proteins are commonly known as vegetative insecticidal proteins (Vips) and exhibit potent insecticidal activity against several lepidopteran, coleopteran and some homopteran pests.

Bacillus thuringiensis is a rod shaped, Gram-positive, filiform, spore forming bacterium, that is ubiquitous in nature. This organism has been isolated worldwide from a great diversified environments including soil, water, dead insects, dust from silos, leaves from deciduous trees, diverse conifers, and insectivorous mammals, and even from human tissues with severe necrosis (Palma et al., 2014). Among the various sources for *B. thuringiensis* isolation, soil is the most suitable media for collecting diverse isolates. There are several *B. thuringiensis* collections across the world, which are being tested against a number of insect pests. Li et al. (2007) reported that, *B. thuringiensis* isolates are distributed

worldwide, and more than 60,000 have been collected by various industries in an effort to obtain novel crystal proteins. Each *B. thuringiensis* isolate produces different types of crystal toxins either alone or in combination and exhibits specific activity against one or a few related species of insects. Therefore, large-scale screening programmes have been conducted worldwide, leading to important collections of isolates from different environments and characterized to evaluate their toxic potential against various insect orders (Quesada and Valverde 2004, Ramalakshmi and Udayasuriyan 2010). The studies were conducted at Regional Agricultural Research Station, Tirupati to isolate and characterize the environmental *B. thuringiensis* strains from soil samples collected in Nellore district of Andhra Pradesh, India for their potential to control *Spodoptera litura* (Fabricius).

MATERIAL AND METHODS

Collection, isolation and identification of *B. thuringiensis* from soil samples: During the study, 205 rhizosphere soil samples were collected from various locations in Nellore district of Andhra Pradesh covering crop fields, waste lands, virgin soils and other habitats. Samples were collected aseptically in sterile polythene bags. Sodium acetate selection method was adopted for isolating *B. thuringiensis* with slight modifications (Santana et al., 2008, Devaki et al., 2020). Half a gram of soil sample was added to 10 ml of Luria Bertani (LB) broth in a 100 ml conical flask

along with 0.5 M sodium acetate. The mixture was kept on a shaker for 4h at 250 rpm at room temperature and subjected to heat shock at 80°C for 15 min and plated at 10⁻⁵ dilution on LB agar (LBA) medium. Cream coloured colonies with a characteristic 'fried egg' appearance were picked up after 18h of incubation on LB agar media, followed by Gram's staining. The Gram positive cultures grown on T3 media for 72 h for crystal and endospore production were further characterized for the presence or absence of crystal proteins and endospores using standard protocols (Jisha and Benjamin 2014). The Gram positive culture which were confirmed for crystal and endospore production were further purified by repeated four-way streaking (Merdan et al., 2010) on pre-pasteurized LB agar plates. The cultures which were observed positive in Gram's staining, crystal and endospore staining were further used in bioassay studies.

Bioassay of *B. thuringiensis* against *S. litura*: Forty four *B. thuringiensis* strains were assayed to ascertain larvicidal activity against third instar larvae of *S. litura*. The standard *B. thuringiensis* (HD1) strain obtained from National Beaureau of Agricultural Insect Resources (NBAIR), Bengaluru was used as a reference strain. Individual *B. thuringiensis* culture was streaked on plain LB agar plates and incubated overnight at 37°C. One loop of the overnight culture was inoculated in LB broth and kept for sporulation under shaking conditions (250 rpm) at 28°C for 72 h. The culture containing spore crystal mixture was pelletized in Eppendorf centrifuge at 10000 rpm for 10 min. The resultant pellet was diluted in sterile water, plated on LBA and colony counts were taken for fixing the doses.

The bioassay was conducted by leaf dip method at a concentration of 5 -10⁸ CFU/ml (Devaki et al., 2017). Groundnut compound leaves containing four leaflets were dipped into culture broth containing 0.2 per cent Triton X-100 for 10 minutes and air-dried. After drying, leaf petiole was swabbed with wet cotton to maintain leaf turgidity and dip the leaf in *B. thuringiensis* isolates with different dilutions. One treated groundnut leaf for one replication was placed in a petriplate. Ten third instar larvae were released per replication. HD-1 served as a reference strain. The leaves dipped in distilled water served as control. The larval mortality was assessed after 72 h at regular intervals till pupation and LC₅₀ values were determined using probit analysis. Isolates with more than 75 per cent mortality (N3, N30, N44, N48, N58, N93, N115) along with HD1 were tested for determining lethal concentrations following the same leaf dip procedure. Five concentrations viz., 10³, 10⁴, 10⁵, 10⁶, and 10⁷ CFU/ml were used for carrying probit analysis and LC₅₀ determination.

DNA extraction and PCR amplification: Genomic DNA

was isolated from 18 *B. thuringiensis* strains with ≥ 75% larval mortality of III instar *S. litura* by adopting the protocol of Sambrook and Russell (1998). The resultant DNA was verified for its quality and purity through agarose gel electrophoresis as well as nanodrop spectrophotometer. A total of 14 cry gene-specific primers (*cry1Aa*, *cry1Ab*, *cry1Ac*, *cry1C*, *cry1Da1*, *cry1Ea1*, *cry1F*, *cry1Fa1*, *cry1I*, *cry2*, *cry2A(a)1*, *cry8*, *cry9Aa1* and *cry9Ca1*) were used in the study. The primers were synthesized with the known sequences available in the literature (Table 1). The conditions like initial denaturation, annealing temperature, elongation and final extension were standardized by using gradient PCR. Composition of the reaction mixture was also standardized and a final proportions of PCR reagents and buffers were as follows; Taq assay buffer (10X) 2.5 µl, dNTP's (2 mM) 1.5 µl, 2.5 µl of each forward and primer, MgCl₂ (2.0 mM) 1.5 µl, Taq DNA polymerase (3 U /µl) 0.5 µl, Template DNA (100 ng) 2.5 µl and made to a final volume of 25 µl. Thermal cycling was fixed for each primer in Biorad thermal cycler and resultant PCR product was ran through electrophoresis on 1% agarose gel. The particulars of primer sequencing, annealing temperature, and PCR recipe are listed in the Table 1, 2 and 3.

RESULTS AND DISCUSSION

Isolation and screening of *B. thuringiensis* from soil samples: Out of 205 samples collected from diverse soil environments screened for bacterial cultures, a total of 68 samples were identified as Gram positive organisms. Among these, 48 isolates were capable of producing endospores, of which 44 were confirmed as crystal positive *B. thuringiensis* strains. Based on crystal morphology, 16 produced spherical crystals, 11 irregular, 7 bipyramidal, 6 cuboidal and 4 showed a combination of bipyramidal & cuboidal forms. All these 44 crystal producing strains were used in the laboratory bioassays against third instar larvae of *S. litura*.

Bioassay of *B. thuringiensis* isolates: In the bioassay, larval mortality was recorded from 72 h to 168 h after treatment and the mortality was ranged from 0.0 to 50.0, 0.0 to 36.67, 0.0 to 36.67, 0.0 to 26.67 and 0.0 to 33.33 per cent at 72, 96, 120, 144 and 168 hours after treatment, respectively (Table 4). At 72 hours after treatment, among the 44 isolates, N115 recorded the highest larval mortality of 40 per cent which was statistically on par with standard check HD-1. The next best treatments were N30, N48, (N58 %), N69, N100, N118 and N93 and all statistically at par with each other. Whereas, at 96 hours after treatment, isolates N3, N45, N58, N100, N189 each recorded 23.33 per cent mortality and were significantly superior over the other treatment. At 120 hours after treatment, isolates N173, N141, N93, N3, N115

were effective and on par with each other. Subsequently, N44 (26.67%) and N34 (33.33%) recorded higher larval mortality at 144 and 168 hours after treatment, respectively.

Cumulative mortality data revealed that isolate N30 caused the highest larval mortality (86.67%), followed by N3 which were comparable with standard check HD-1 (96.67%). The other treatments in the order of efficacy was N44, N48, N58, N93, N115, and N141, which were statistically similar in their efficacy. The rest isolates were no way superior to untreated check (Table 3). Probit analysis revealed that the lowest LC₅₀ was observed for N30 (1.90-10⁵CFU/ml) followed by N3 (2.18- 10⁵ CFU/ml), which recorded quicker lethal time to kill 50 per cent population (LT₅₀ = 95.70 h). In standard check HD1 recorded the lowest LC₅₀ and LC₉₀ values with LT₅₀ and LT₉₀ of 61.99 h and 121.64 h, respectively (Table 4a).

Molecular characterization of *B. thuringiensis* isolates:

Molecular characterization of 19 *B. thuringiensis* strains native to Nellore district soil samples, revealed distinct *cry*

Table 2. PCR reaction mixture for amplification of native *B. thuringiensis* strains with specific *cry* primers

Reagents	Volume/reaction
Taq assay buffer (10X)	2.5 μ l
dNTP's (2 mM)	1.5 μ l
Forward primer (5 pmole)	2.5 μ l
Reverse primer (5 pmole)	2.5 μ l
MgCl ₂ (2.0 mM)	1.5 μ l
Taq DNA polymerase (3 U / μ l)	0.5 μ l
Template DNA (100 ng)	2.5 μ l
Sterile distilled water	11.5 μ l
Total	25.0 μ l

Table 1. Details of *cry* primers used in the study

Primer name	Forwardion	Primer sequence	Reference
<i>cry1Aa</i>	Forward	ATTATCATATTGATCAAGTTC	Salek et al., 2012
	Reverse	CATAAGGAACCCGTACCTGG	
<i>cry1Ab</i>	Forward	GGACCAGGATTACAGGAGG	-do-
	Reverse	GTTCTCTACTAATGGTTCC	
<i>cry1Ac</i>	Forward	CTCAATGGGACGCATTTCTT	-do-
	Reverse	CGGTTGTAAGGGCACTGTT	
<i>cry1C</i>	Forward	AAAGATCTGGAACACCTTT	Ceron et al., 1994
	Reverse	CAAACCTCTAAATCCTTCAC	
<i>cry1Da</i>	Forward	GTAGCAGACATTTCATTAGG	Pooja et al., 2013
	Reverse	ACATGAATAAGGCTAGTCAG	
<i>cry1Ea1</i>	Forward	ATATAGAAGTAGGGGACAG	-do-
	Reverse	TAGCCCTAGTTGATTGTAG	
<i>cry1Fa1</i>	Forward	GATTGCTAATACAGACGAC	-do-
	Reverse	CGTGAACTCACTAAGTGTCC	
<i>cry1F</i>	Forward	TGTAGAAGAGGAAGTCTATCCA	Ceron et al., 1994
	Reverse	TATCGGTTCTGGGAGTA	
<i>cry1I</i>	Forward	AGCTATGGCCTAAGGGGAAA	Nariman, 2007
	Reverse	TTCCAACCCAACCTTCAA	
<i>cry2</i>	Forward	GTTATTCTTAATGCAGATGAATGGG	Ben-Dov et al., 1997
	Reverse	CGGATAAAATAATCTGGGAAATAGT	
<i>cry2A(a)</i>	Forward	AAGGAGGAATTTATATGAA	Ogunjimi et al., 2002
	Reverse	CATTTAGTCCGTCAATATG	
<i>cry8</i>	Forward	ATGAGTCAAATAATCTAAATG	Bravo et al., 1998
	Reverse	TTTCATTAATGAGTTCTTCACTCG	
<i>cry9Aa1</i>	Forward	ATCGTAGAGAGTGACATTG	Pooja et al., 2013
	Reverse	TGTTGTCCAGAGATTAGTTC	
<i>cry9Ca1</i>	Forward	GGATCTAAATGCAAGTGTAG	-do-
	Reverse	ACCATTACATCGTAGTCAC	

gene profiles. Among these, seven (N20, N23, N30, N63, N93, N141, N143,) *B. thuringiensis* strains harboured *cry1l* genes, six strains (N45, N69, N93, N130, N141, N143) contained *cry1Aa* and four strains (N3, N93, N100, N115) possessed *cry1C*. Three strains were positive for *cry1Da1* (N44, N69, N96) and *cry1Fa1* (N141, N143, N158). Only one strain N69 harboured *cry1Ea1* gene (Tables 5, 6). Among the *cry2* group positive isolates, one strain (N20) harboured *cry2* and five strains (N23, N30, N58, N93, N100) harboured both *cry2* and *cry2A(a)1* genes. Four strains (N23, N30, N93, N141) possessed *cry9Ca1* gene. None of the isolates in the present study tested positive for *cry1Ab*, *cry1Ac*, *cry1F*, *cry9Aa1*, *cry8* genes. There was no definite relationship between the isolate efficacy and number of crystal proteins encoding *cry* genes. However, isolates harbouring multiple *cry* genes tended to exhibit higher larvicidal activity. One representative strain N115 was sequenced using 16S rRNA primer, the gene sequence was deposited in NCBI GenBank with accession Number MF487791. The highest mortality of 86.67 and 83.33 per cent mortality was observed in *B. thuringiensis* isolates, N30 and N3, respectively which were statistically on par with the HD1. The present studies are in line with the earlier studies made by Mehiar et al. (2015) who

reported that, forest, beach and cultivated soils had more *B. thuringiensis* strains than uncultivated and interior arid soils. The frequency of *B. thuringiensis* occurrence was partially dependant on organic matter and pH content of the soil, with about 65 per cent of the isolates found toxic to *Galleria mellonella*. The most toxic isolate of *B. thuringiensis* was obtained from cultivated area and produced bipyramidal, cuboidal and rectangular inclusions.

Similarly, Sharma (2000) reported a mortality of 66.66 to 100 per cent with five *B. thuringiensis* formulations against *S. litura* and *Spilarctia obliqua* under controlled conditions at $26 \pm 1^\circ\text{C}$ and 75 per cent relative humidity which were on par with endosulfan. Further, Nariman et al. (2009) reported a higher mortality of 100 per cent and 90 per cent of second instar *S. littoralis* with two *B. thuringiensis* isolates Ts-5 and As-3, respectively collected from seven governorates of Egypt. Lalitha et al. (2012) also reported a mortality of 16.67 to 94.44 per cent with *B. thuringiensis* isolates against second instar larvae of *H. armigera* where *B. thuringiensis* isolates 122 and 22 recorded 83.33 per cent mortality and was statistically on par with HD-1. At the same time Al-Otaibi (2013) reported a higher positive efficiency of *B. thuringiensis* isolates in spore+ crystal mixtures @ 10^9 CFU/ml at 168h after treatment against second instar *S. littoralis* larvae. Ricardo et al. (2000) also reported a mortality of 100 and 80.4 per cent in second instar larvae of *S. frugiperda* with the suspensions of *Bt aizawai* HD 68 and *Bt thuringiensis* 4412, respectively, containing 3- 10^8 cells/ml. Azzouz et al. (2014) also confirmed a higher toxicity of *B. thuringiensis* against *S. littoralis* while Pooja et al. (2013) reported a cumulative mortality of 83.33 per cent with the *B. thuringiensis* isolate DBT153 against *Plutella xylostella* collected from hill ecosystems in Coorg district. Devaki et al. (2017) reported a cumulative mortality of 83.33 per cent with *B. thuringiensis* strains viz., C79, C97, C134 and C212 against third instar larvae of *S. litura* at 5×10^6 CFU/ml. As against this, Mohan et al. (2014) reported a low toxicity of *B. thuringiensis* HD-1 strain against *S. litura* and non-toxic effects of HD-73 strain against *S. litura* and *S. oblique*. Liao et al. (2002) also observed that *H. armigera* strain from Australia was poorly susceptible to *cry9Ca1* toxin produced by *Bt tolworthi*.

The present study also aligns with Nazarian et al. (2009) and Konecka et al. (2012) with high frequency of *cry1l* gene from *B. thuringiensis* isolates. Similarly, Salama et al. (2015) revealed that, the *cry1* gene (83.33%) was the most abundant in the soil samples of Egypt. Yilmaz (2010) reported that the frequency of *cry1Ab* or *cry1Ac* was highest (47.72%) of all the *cry* genes studied in isolates obtained from Adana region of Turkey. Further, Devaki et al (2020) reported

Table 3. PCR conditions for each set of *cry* primers used in the analysis

Step		Temperature (°C)	Duration (min)	No. of cycles
Initial denaturation		94.0	10	1
Denaturation		94.0	½	35
Annealing	<i>cry1Aa</i>	48.9	1	35
	<i>cry1Ab</i>	53.4		
	<i>cry1Ac</i>	54.4		
	<i>cry1C</i>	52.0		
	<i>cry1Da 1</i>	51.3		
	<i>cry1Ea1</i>	51.3		
	<i>cry1Fa1</i>	50.3		
	<i>cry1F</i>	52.0		
	<i>cry1l</i>	47.3		
	<i>cry2</i>	57.2		
	<i>cry2Aa</i>	46.2		
	<i>cry8</i>	49.0		
	<i>cry9Aa1</i>	51.0		
	<i>cry9Ca1</i>	52.3		
	16s rRNA	49.0		
Extension		72.0	2	35
Final extension		72.0	10	1
Hold		4.0	∞	-

Table 4. Bioassay of *B. thuringiensis* isolates collected from Nellore district against third instar *S. litura* larvae under laboratory conditions

Isolate	Per cent mortality					
	72h	96h	120h	144h	168h	Cumulative
N2	10.00 (15.00) ^{aefg}	10.00 (15.00) ^{abcd}	0.00 (0.00) ^a	3.33 (6.15) ^{ab}	0.00 (0.00) ^a	23.33 (28.78) ^{cde}
N3	0.00 (0.00) ^a	23.33 (28.78) ^{de}	23.33 (28.29) ^{defgh}	16.67 (23.86) ^{de}	20.00 (26.57) ^{gh}	83.33 (70.78) ^{klm}
N7	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^a	16.67 (23.86) ^{fg}	16.67 (23.86) ^{cd}
N9	30.00 (33.00) ^{h-n}	6.67 (12.29) ^{abc}	6.67 (8.86) ^{abc}	6.67 (12.29) ^{abcd}	0.00 (0.00) ^{ab}	50.00 (45.08) ^{defj}
N11	10.00 (18.43) ^{efgh}	3.33 (6.14) ^{ab}	10.00 (15.00) ^{a-e}	0.00 (0.00) ^a	10.00 (11.07) ^{a-f}	33.33 (34.63) ^{cdefg}
N15	13.33 (21.14) ^{fghi}	6.67 (12.29) ^{abc}	20.00 (21.14) ^{b-h}	3.33 (6.15) ^{ab}	6.67 (8.86) ^{a-e}	50.00 (45.79) ^{efj}
N20	10.00 (15.00) ^{a-g}	10.00 (15.00) ^{abcd}	10.00 (15.00) ^{a-e}	0.00 (0.00) ^a	30.00 (33.00) ^h	60.00 (51.14) ^{f-k}
N23	10.00 (15.00) ^{a-g}	16.67 (23.86) ^{cde}	10.00 (15.00) ^{a-e}	0.00 (0.00) ^a	30.00 (33.00) ^h	66.67 (55.37) ^{ghijkl}
N30	36.67 (37.14) ^{klmn}	13.33 (21.14) ^{bcd}	13.33 (17.71) ^{bcd}	13.33 (21.15) ^{cde}	10.00 (15.00) ^{a-g}	86.67 (72.78) ^{lm}
N32	0.00 (0.00) ^a	10.00 (18.43) ^{bcd}	3.33 (6.14) ^{ab}	6.67 (12.29) ^{abcd}	6.67 (12.29) ^{a-f}	26.67 (31.00) ^{cdef}
N34	3.33 (6.14) ^{a-e}	0.00 (0.00) ^a	0.00 (0.00) ^a	6.67 (8.86) ^{abc}	33.33 (35.01) ^h	43.33 (41.15) ^{defghi}
N37	23.33 (28.29) ^{g-m}	10.00 (18.43) ^{bcd}	3.33 (6.14) ^{ab}	16.67 (23.86) ^{de}	6.67 (12.29) ^{a-f}	60.00 (50.94) ^{f-k}
N44	26.67 (31.00) ^{h-n}	3.33 (6.14) ^{ab}	20.00 (26.57) ^{defgh}	26.67 (30.79) ^e	0.00 (0.00) ^{abc}	76.67 (61.22) ^{hijkl}
N45	3.33 (6.14) ^{a-e}	23.33 (28.78) ^{de}	20.00 (26.07) ^{cdefgh}	6.67 (12.29) ^{abcd}	0.00 (0.00) ^{abc}	53.33 (46.92) ^{efj}
N48	33.33 (35.22) ^{l-n}	16.67 (23.86) ^{cde}	6.67 (12.29) ^{abcd}	0.00 (0.00) ^a	20.00 (21.93) ^{efgh}	76.67 (61.92) ^{ijkl}
N58	33.33 (34.93) ^{l-n}	23.33 (28.78) ^{de}	13.33 (21.14) ^{b-h}	0.00 (0.00) ^a	6.67 (12.29) ^{a-f}	76.67 (61.92) ^{ijkl}
N61	0.00 (0.00) ^a	6.67 (12.29) ^{abc}	0.00 (0.00) ^a	10.00 (18.44) ^{bcd}	0.00 (0.00) ^{abc}	16.67 (23.86) ^{cd}
N63	20.00 (22.14) ^{fj}	16.67 (19.93) ^{bcd}	13.33 (21.14) ^{b-h}	0.00 (0.00) ^a	0.00 (0.00) ^{abc}	50.00 (44.21) ^{defj}
N64	0.00 (0.00) ^a	10.00 (18.43) ^{bcd}	6.67 (12.29) ^{abcd}	10.00 (18.44) ^{bcd}	0.00 (0.00) ^{abc}	26.67 (31.00) ^{cdef}
N65	0.00 (0.00) ^a	10.00 (18.43) ^{bcd}	6.67 (12.29) ^{abcd}	0.00 (0.00) ^a	0.00 (0.00) ^{abc}	16.67 (23.86) ^{cd}
N69	33.33 (35.22) ^{l-n}	16.67 (23.86) ^{cde}	6.67 (12.29) ^{abcd}	10.00 (15.00) ^{bcd}	0.00 (0.00) ^{abc}	66.67 (55.07) ^{ghijkl}
N93	23.33 (24.15) ^{fjk}	10.00 (18.43) ^{bcd}	30.00 (33.00) ^{fg}	3.33 (6.15) ^{ab}	10.00 (18.44) ^{defg}	76.67 (65.85) ^{ijklm}
N100	33.33 (35.22) ^{l-n}	23.33 (28.78) ^{de}	0.00 (0.00) ^a	3.33 (6.15) ^{ab}	0.00 (0.00) ^{abc}	60.00 (50.85) ^{f-jk}
N105	0.00 (0.00) ^a	16.67 (23.86) ^{cde}	3.33 (6.14) ^{ab}	10.00 (18.44) ^{bcd}	3.33 (6.15) ^{abcd}	33.33 (35.22) ^{cdefg}
N106	10.00 (18.43) ^{efgh}	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^{abc}	10.00 (18.43) ^{ac}
N107	6.67 (12.29) ^{a-f}	6.67 (12.29) ^{abc}	0.00 (0.00) ^a	13.33 (21.15) ^{cde}	6.67 (12.29) ^{a-f}	33.33 (35.01) ^{cdefg}
N108	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^a	6.67 (8.86) ^{abc}	10.00 (18.44) ^{defg}	16.67 (23.36) ^{cd}
N115	40.00 (39.15) ^{kmn}	10.00 (18.43) ^{bcd}	23.33 (28.78) ^{defgh}	0.00 (0.00) ^a	3.33 (6.15) ^{abcd}	76.67 (65.85) ^{klm}

Cont..

Table 4. Bioassay of *B. thuringiensis* isolates collected from Nellore district against third instar *S. litura* larvae under laboratory conditions

Isolate	Per cent mortality					
	72h	96h	120h	144h	168h	Cumulative
N117	0.00 (0.00) ^{ab}	30.00 (28.08) ^{cde}	10.00 (18.43) ^{b-g}	3.33 (6.15) ^{ab}	0.00 (0.00) ^{abc}	43.33 (39.99) ^{cdefgh}
N118	33.33 (35.22) ^{hn}	20.00 (26.07) ^{cde}	3.33 (6.14) ^{ab}	0.00 (0.00) ^a	3.33 (6.15) ^{abcd}	60.00 (51.14) ^{fjk}
N122	0.00 (0.00) ^{abc}	10.00 (18.43) ^{bcd}	3.33 (6.14) ^{ab}	3.33 (6.15) ^{ab}	0.00 (0.00) ^{abc}	16.67 (23.86) ^{cd}
N130	23.33 (28.78) ^{g-m}	20.00 (26.07) ^{cde}	3.33 (6.14) ^{ab}	3.33 (6.15) ^{ab}	0.00 (0.00) ^{abc}	50.00 (45.08) ^{def-j}
N131	16.67 (23.86) ^{fj}	10.00 (18.43) ^{bcd}	6.67 (12.29) ^{abcd}	0.00 (0.00) ^a	0.00 (0.00) ^{abc}	33.33 (35.22) ^{cdefg}
N138	10.00 (18.43) ^{efgh}	3.33 (6.14) ^{ab}	10.00 (18.43) ^{b-g}	3.33 (6.15) ^{ab}	0.00 (0.00) ^{abc}	26.67 (30.79) ^{cde}
N141	20.00 (26.07) ^{f-jklm}	20.00 (26.07) ^{cde}	33.33 (35.22) ^{gh}	0.00 (0.00) ^a	0.00 (0.00) ^{abc}	73.33 (59.71) ^{hijkl}
N143	16.67 (23.86) ^{fj}	10.00 (18.43) ^{bcd}	26.67 (31.00) ^{efgh}	0.00 (0.00) ^a	0.00 (0.00) ^{abc}	53.33 (46.92) ^{ef-j}
N148	16.67 (23.86) ^{fj}	20.00 (26.07) ^{cde}	13.33 (21.14) ^{b-h}	10.00 (15.00) ^{bcd}	0.00 (0.00) ^{abc}	60.00 (51.14) ^{fjk}
N158	23.33 (24.15) ^{fj}	10.00 (18.43) ^{bcd}	13.33 (21.14) ^{b-h}	3.33 (6.15) ^{ab}	0.00 (0.00) ^{abc}	50.00 (45.00) ^{def-j}
N173	0.00 (0.00) ^{abcd}	0.00 (0.00) ^a	36.67 (37.14) ^h	3.33 (6.15) ^{ab}	3.33 (6.15) ^{abcd}	43.33 (41.07) ^{defghi}
N188	0.00 (0.00) ^{abcd}	10.00 (15.00) ^{abcd}	10.00 (15.00) ^{a-e}	6.67 (12.29) ^{abcd}	0.00 (0.00) ^{abc}	26.67 (30.29) ^{cde}
N189	0.00 (0.00) ^{abcd}	23.33 (24.15) ^{cde}	10.00 (18.43) ^{b-g}	0.00 (0.00) ^a	10.00 (15.00) ^{abcdefg}	43.33 (40.86) ^{defghi}
N190	0.00 (0.00) ^{abcd}	0.00 (0.00) ^a	16.67 (23.86) ^{cdefgh}	0.00 (0.00) ^a	0.00 (0.00) ^{abc}	16.67 (23.86) ^{cd}
N192	0.00 (0.00) ^{abcd}	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^{abc}	0.00 (0.00) ^a
N193	0.00 (0.00) ^{abcd}	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^{abc}	0.00 (0.00) ^a
HD1	50.00 (45.00) ⁿ	36.67 (37.22) ^e	3.33 (6.14) ^{ab}	6.67 (12.29) ^{abcd}	0.00 (0.00) ^{abc}	96.67 (83.86) ^m
Control	0.00 (0.00) ^{abcd}	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^a	0.00 (0.00) ^{abc}	0.00 (0.00) ^{ab}
SEd	6.27	6.50	7.06	5.95	5.99	8.88
LSD	12.46	12.92	14.03	11.81	11.88	17.65

Figures in parentheses are arcsine transformed values

Alphabets indicating Duncan Multiple Range Test (DMRT)

Table 4a. Lethal dose calculation for effective *B. thuringiensis* strains

Bt isolates	Regression equation	LC ₅₀ values CFU/ ml	LC ₉₀ values CFU/ ml	LT ₅₀ (h)	LT ₉₀ (h)
N3	Y =-2.267 +0.425X	2.18 × 10 ⁵	2.27 × 10 ⁸	129.25	175.33
N30	Y =-2.616+0.496X	1.90 × 10 ⁵	7.33 × 10 ⁷	95.70	180.74
N44	Y =-1.891 +0.315X	9.93 × 10 ⁵	1.15 × 10 ⁷	116.47	193.62
N48	Y =-2.256 +0.365X	1.50 × 10 ⁶	4.85 × 10 ⁹	107.79	233.62
N58	Y =-2.687 +0.453X	8.42 × 10 ⁵	5.65 × 10 ⁸	92.78	206.34
N93	Y =-2.398 +0.387X	1.59 × 10 ⁶	3.27 × 10 ⁹	115.31	196.39
N115	Y =-2.689+0.434X	1.57 × 10 ⁶	1.40 × 10 ⁹	88.68	205.28
HD-1	Y =-2.252+0.452X	9.59 × 10 ⁴	6.56 × 10 ⁷	61.99	121.64

Table 5. Origin of native *B. thuringiensis* isolates with ≥ 50 per cent mortality against *S. litura* collected from Nellore district

Isolate	Mortality (%)	Place of collection	Crop/ location
N3	83.33	Mambattu	Groundnut
N9	50.00	Mamillapadu	Cultivated Fallow
N15	50.00	Vaddipalem	Grass
N20	60.00	Chamellapadu	Fodder
N23	66.67	Venambakkam	Cultivated Fallow
N30	86.67	Chembedupalem	Grass
N37	60.00	Sullurpet	Sugarcane
N44	76.67	Venkatagiri	Jack fruit
N45	53.33	Petlur	Fallow
N48	76.67	Petlur	Neem
N58	76.67	Venkatagiri	Cultivated Fallow
N63	50.00	Peddayachasamudram	Grass
N69	66.67	Marlagunta	Teak
N93	76.67	Chaganam	Hill
N100	60.00	Saidapuram	Mango
N115	76.67	Kasumur	Eucalyptus
N118	60.00	Gurivindapudi	Neem
N130	50.00	Anuppallipadu	Grass
N141	73.33	Narasareddypalli	Sugarcane
N143	53.33	Narasareddypalli	Fodder
N148	60.00	Gudur	Cultivated Fallow
N158	50.00	Naidupet	Brinjal

that the *cry11* was the predominant gene among *B. thuringiensis* collections from soil samples in undisturbed environments of Andhra Pradesh, India. Some of the strains in present *B. thuringiensis* collections harbored *cry2* genes. Similar findings were reported by Liang et al. (2011), who studied the diversity of *cry2* genes in Sichuan basin, western China. Among the 791 *Bt* strains isolated from 2650 soil samples in different ecological regions, it was found that, 322 *B. thuringiensis* strains harboured *cry2*-type genes with four different RFLP patterns. The combination of *cry2Aa/cry2Ab* gene was the most frequent (90.4%), followed by *cry2Aa* (6.8%) and *cry2Ab* alone (2.5%).

CONCLUSIONS

The soil samples from Nellore district of Andhra Pradesh, India harboured good number of *B. thuringiensis* isolates. Out of 205 soil samples screened, 44 cultures were identified and evaluated against third instar larvae of *S. litura*. The highest per cent mortality was observed with N30, followed N3 both of which were statistically superior over the other strains and on par with standard strain HD1. Molecular characterization of the virulent *B. thuringiensis* strains with *cry* gene specific

Table 6. *Cry* genes in effective native *B. thuringiensis* strains effective against *S. litura* collected from southern zone of Andhra Pradesh

Isolate	Mortality (%)	<i>cry</i> gene(s) observed	No. of <i>cry</i> genes
N3	83.33	<i>cry1C</i>	1
N20	60.00	<i>cry11, cry2</i>	2
N23	66.67	<i>cry11, cry2A(a)1, cry9Ca1</i>	3
N30	86.67	<i>cry11, cry2A(a)1, cry9Ca1</i>	3
N44	76.67	<i>cry1Da1</i>	1
N45	53.33	<i>cry1Aa</i>	1
N48	76.67	-	-
N58	76.67	<i>cry2A(a)1</i>	1
N63	50.00	<i>cry11</i>	1
N69	66.67	<i>cry1Aa, cry1Da1, cry1Ea1</i>	3
N93	76.67	<i>cry1Aa, cry1C, cry11, cry2A(a)1, cry9Ca1</i>	5
N100	60.00	<i>cry1C, cry2A(a)1</i>	2
N115	76.67	<i>cry1C</i>	1
N118	60.00	-	0
N130	50.00	<i>cry1Aa</i>	1
N141	73.33	<i>cry1Aa, cry1Fa1, cry11</i>	3
N143	53.33	<i>cry1Aa, cry1Fa1, cry11</i>	3
N148	60.00	-	0
N158	50.00	<i>cry1Fa1</i>	1

primers indicated that *cry11* gene was predominant in seven *B. thuringiensis* strains, which was reported to confer specific toxicity against lepidopteran insects.

REFERENCES

Al-Otaibi SA 2013. Mortality responses of *Spodoptera litura* following feeding on *Bt*-sprayed plants. *Journal of Basic and Applied Sciences* **9**: 195-215.

Alsaedi G, Ashouri A and Talaei-Hassanlou R 2017. Evaluation of *Bacillus thuringiensis* to Control *Tuta absoluta* (Meyrick) (Lepidoptera: Gelechiidae) under Laboratory Conditions. *Agricultural Sciences* **8**: 591-599.

Azzouz H, Kebaili-Ghribi J, Farhat-Touzri DB, Tounsi FS and Jaoua S 2014. Selection and characterization of an HD1-like *Bacillus thuringiensis* isolate with a high insecticidal activity against *Spodoptera littoralis* (Lepidoptera: Noctuidae). *Pest Management Science* **70**(8): 1192-1201.

Ben-Dov EA, Zaritsky E, Dahan Z, Barak R and Sinai 1997. Extended screening by PCR for seven *cry*-group genes from field-collected strains of *Bacillus thuringiensis*. *Applied Environmental Microbiology* **63**: 4883.

Ceron J, Covarrubias L, Quintero R, Ortiz A and Ortiz 1994. PCR analysis of *cry1* insecticidal family genes from *Bacillus thuringiensis*. *Applied Environmental Microbiology* **60**: 353.

Devaki K, Muralikrishna T, Hari Prasad KV, Sarada Jayalakshmi Devi R and Mohan Naidu G 2017. *In vitro* evaluation of *Bacillus thuringiensis* (Berliner) native strains against *Spodoptera litura* (Fabricius). *Current Biotica* **10**(4): 261-267.

Devaki K, Muralikrishna and HariPrasad V 2020. Comparative efficacy of native *Bacillus thuringiensis* strains in two different

sprayable formulations against *Spodoptera litura* in groundnut. *Journal of Entomology and Zoology Studies* **8**(3): 107-112.

Devaki K, MuraliKrishna T and HariPrasad KV 2020. Diversity of *Bacillus thuringiensis* cry genes in soils of Andhra Pradesh, India. *Indian Journal of Biochemistry & Biophysics* **57**: 471-480.

Jisha VN and Benjamin S 2014. Solid-state fermentation for the concomitant production of δ-endotoxin and endospore from *Bacillus thuringiensis* subsp. *kurstaki*. *Advances in Bioscience and Biotechnology* **5**: 797-804.

Konecka E, Baranek J, Hrycak A and Kaznowski A 2012. Insecticidal activity of *Bacillus thuringiensis* strains isolated from soil and water. *The Scientific World Journal* **710501**: 1-5.

Lalitha C, Murali Krishna T, Sravani S and Devaki K 2012. Laboratory evaluation of native *Bacillus thuringiensis* isolates against second and third instar *Helicoverpa armigera* (Hubner) larvae. *Journal of Biopesticides* **4**-9.

Li MS, Choi JY, Roh HJ, Shim JN and Kang Y 2007. Identification of molecular characterization of novel cry1-type toxin genes from *Bacillus thuringiensis* K-1 isolated in Korea. *Journal of Microbiology and Biotechnology* **17**: 15-20.

Liang H, Liu Y, Zhu J, Guan P, Li S, Wang S, Zheng A, Liu H and Li P 2011. Characterization of cry2-type genes of *Bacillus thuringiensis* strains from soil isolated of Sichuan basin. *Brazilian Journal of Microbiology* **42**: 140-146.

Liao C, Heckel DG and Akhurst R 2002. Toxicity of *Bacillus thuringiensis* insecticidal proteins for *Helicoverpa armigera* and *Helicoverpa punctigera* (Lepidoptera: Noctuidae), major pests of cotton. *Journal of Invertebrate Pathology* **80**: 55-63.

Meihiar M, Ahmad M, Al-Zyoud F and Amer K 2015. Environmental Distribution, Frequency and Toxicity of *Bacillus thuringiensis* in Syria. *Annual Research and Review in Biology* **5**(2): 174-183.

Merdan A, Salama HS, Labib E, Ragaei and Mand AEG 2010. *Bacillus thuringiensis* isolates from soil and diseased insects in Egyptian cotton fields and their activity against lepidopteran insects. *Archives of phytopathology and plant protection* **43**(12): 1165-1176.

Mohan M, Rangeshwaran R, Sivakumar G and Verghese 2014. Relative toxicity of subspecies of *Bacillus thuringiensis* against lepidopterous insect pests of agricultural importance. *Journal of Biological Control* **28**(4): 197-203.

Nariman AH 2007. PCR detection of cry genes in local *Bacillus thuringiensis* isolates. *Australian Journal of basic and Applied Sciences* **1**: 461.

Nariman AH, Effat AM, Ola OS and Fandary E 2009. Isolation and genetic characterization of native *Bacillus thuringiensis* strains toxic to *Spodoptera littoralis* and *Culex pipiens*. *Pest Technology* **3**(1): 34-39.

Nazarian A, Jahangiri R, Jouzani GS Seifinejad A, Soheilivand S, Bagheri O, Keshavarzi M and Alamisaed K 2009. Coleopteran-specific and putative novel cry genes in Iranian native *Bacillus thuringiensis* collection. *Journal of Invertebrate Pathology* **102**(2): 101-109.

Ogunjimi A, Chandler JM, Georg OG, Daniel KO and Akinrimisi FU 2002. Heterologous expression of cry2 gene from a local strain of *Bacillus thuringiensis* isolated in Nigeria. *Biotechnology and Applied Microbiology* **36**: 241.

Palma L, Munoz D, Berry C and Murillo J 2014. Molecular and insecticidal characterization of a novel cry-related protein from *Bacillus thuringiensis* Toxic against *Myzus persicae*. *Toxins* **6**: 3144-3156.

Pooja AS, Krishnaraj PU and Prashanthi SK 2013. Profile of cry from native *Bacillus thuringiensis* isolates and expression of cry11. *African Journal of Biotechnology* **12**(22): 3545-3562.

Quesada ME and Valverde GP 2004. Isolation, geographical diversity and insecticidal activity of *Bacillus thuringiensis* from soils in Spain. *Microbiology Research* **159**(1): 59-71.

Ramalakshmi A and Udayasuriyan V 2010. Diversity of *Bacillus thuringiensis* isolated from Western Ghats of Tamil Nadu state, India. *Current Microbiology* **61**: 13-18.

Salama HS, Abd El-Ghany NM and Saker M 2015. Diversity of *Bacillus thuringiensis* isolates from Egyptian soils as shown by molecular characterization. *Journal of Genetic Engineering and Biotechnology* **13**(2): 101-109.

Salek JM, Abolfazl B and Behboud J 2012. Isolation, PCR detection and diversity of native *Bacillus thuringiensis* strains collection isolated from diverse Arasbaran natural ecosystems. *World Applied Sciences* **8**: 1133.

Sambrook J and Russel DW 2001. *Molecular cloning: A laboratory manual*, Cold Spring Harbour Laboratory, New York.

Santana MA, Moccia VC and Gillis AE 2008. *Bacillus thuringiensis* improved isolation methodology from soil samples. *Journal of Microbiological Methods* **75**: 357-358.

Sharma AN 2000. Bioefficacy of *Bacillus thuringiensis* based biopesticides against *Spodoptera litura* (Fab) and *Spilarctia oblique* walker feeding on soybean (*Glycine max* (L.) Merrill). *Crop Research* **19**: 373-375.

Yilmaz S 2010. *Molecular characterization of *Bacillus thuringiensis* strains isolated from different locations and their effectiveness on some pest insects*. Ph.D. Thesis, University of Erciyes, Turkey.

Received 02 September, 2025; Accepted 28 November, 2025